Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T01:29:06.177Z Has data issue: false hasContentIssue false

Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

Published online by Cambridge University Press:  12 October 2017

Michael C. Gao*
Affiliation:
National Energy Technology Laboratory, Albany, Oregon 97321, USA; and AECOM, Albany, Oregon 97321, USA
Pan Gao
Affiliation:
Department of Electrical and Computer Engineering, Tennessee State University, Nashville, Tennessee 37209, USA
Jeffrey A. Hawk
Affiliation:
National Energy Technology Laboratory, Albany, Oregon 97321, USA
Lizhi Ouyang
Affiliation:
Department of Physics and Astronomy, Tennessee State University, Nashville, Tennessee 37209, USA
David E. Alman
Affiliation:
National Energy Technology Laboratory, Albany, Oregon 97321, USA
Mike Widom
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This article provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if the same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.

Type
Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).Google Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).Google Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).Google Scholar
Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Cham, 2016); p. 516.Google Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).Google Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
Zhang, Y., Lu, Z.P., Ma, S.G., Liaw, P.K., Tang, Z., Cheng, Y.Q., and Gao, M.C.: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 4, 57 (2014).Google Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).Google Scholar
Fang, S., Xiao, X., Xia, L., Li, W., and Dong, Y.: Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 321, 120 (2003).Google Scholar
Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: Design of high entropy alloys: A single-parameter thermodynamic rule. Scr. Mater. 104, 53 (2015).Google Scholar
Ye, Y.F., Liu, C.T., and Yang, Y.: A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 94, 152 (2015).Google Scholar
Wang, Z.J., Qiu, W.F., Yang, Y., and Liu, C.T.: Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 64, 63 (2015).CrossRefGoogle Scholar
King, D.J.M., Middleburgh, S.C., McGregor, A.G., and Cortie, M.B.: Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172 (2016).Google Scholar
Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).Google Scholar
Senkov, O.N. and Miracle, D.B.: A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603 (2016).CrossRefGoogle Scholar
Poletti, M.G. and Battezzati, L.: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297 (2014).Google Scholar
Toda-Caraballo, I. and Rivera-Diaz-del-Castillo, P.E.J.: A criterion for the formation of high entropy alloys based on lattice distortion. Intermetallics 71, 76 (2016).Google Scholar
Guo, S.: Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 31, 1223 (2015).CrossRefGoogle Scholar
Gao, M.C., Carney, C.S., Doğan, Ö.N., Jablonksi, P.D., Hawk, J.A., and Alman, D.E.: Design of refractory high-entropy alloys. JOM 67, 2653 (2015).Google Scholar
Zhang, B., Gao, M.C., Zhang, Y., and Guo, S.M.: Senary refractory high-entropy alloy Cr x MoNbTaVW. CALPHAD 51, 193 (2015).Google Scholar
Gao, M.C., Zhang, B., Yang, S., and Guo, S.M.: Senary refractory high-entropy alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47, 3333 (2016).CrossRefGoogle Scholar
Yao, H.W., Qiao, J.W., Gao, M.C., Hawk, J.A., Ma, S.G., Zhou, H.F., and Zhang, Y.: NbTaV–(Ti,W) refractory high entropy alloys. Mater. Sci. Eng., A 674, 203 (2016).Google Scholar
Yao, H.W., Qiao, J.W., Gao, M.C., Hawk, J.A., Ma, S.G., and Zhou, H.F.: MoNbTaV medium-entropy alloy. Entropy 18, 189 (2016).Google Scholar
Zhang, C., Zhang, F., Chen, S.L., and Cao, W.S.: Computational thermodynamics aided high-entropy alloy design. JOM 64, 839 (2012).Google Scholar
Gao, M.C. and Alman, D.E.: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).Google Scholar
Zhang, F., Zhang, C., Chen, S.L., Zhu, J., Cao, W.S., and Kattner, U.R.: An understanding of high entropy alloys from phase diagram calculations. CALPHAD 45, 1 (2014).Google Scholar
Senkov, O.N., Miller, J.D., Miracles, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys for structural applications. CALPHAD 50, 32 (2015).Google Scholar
Zhang, C. and Gao, M.C.: CALPHAD modeling of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 399.CrossRefGoogle Scholar
Zhang, B., Gao, M.C., Zhang, Y., Yang, S., and Guo, S.M.: Senary refractory high-entropy alloy MoNbTaTiVW. Mater. Sci. Technol. 31, 1207 (2015).Google Scholar
Gao, M.C.: Design of high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 369.Google Scholar
Gao, M.C., Zhang, B., Guo, S.M., Qiao, J.W., and Hawk, J.A.: High-entropy alloys in hexagonal close packed structure. Metall. Mater. Trans. A 47, 3322 (2016).CrossRefGoogle Scholar
Widom, M., Huhn, W.P., Maiti, S., and Steurer, W.: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).Google Scholar
Widom, M.: Prediction of structure and phase transformations. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 267.Google Scholar
Tian, F.Y., Delczeg, L., Chen, N.X., Varga, L.K., Shen, J., and Vitos, L.: Structural stability of NiCoFeCrAl x high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).CrossRefGoogle Scholar
Tian, F.Y., Wang, Y., Irving, D.L., and Vitos, L.: Applications of coherent potential approximation to HEAs. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 299.Google Scholar
Gao, M.C., Niu, C., Jiang, C., and Irving, D.L.: Applications of special quasi-random structures to high-entropy alloys. In High-Entropy Alloys: Fundamentals and Applications, Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y., eds. (Springer International Publishing, Cham, 2016); p. 333.CrossRefGoogle Scholar
Ma, D., Grabowski, B., Kormann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).Google Scholar
Bei, H.: Multi-component solid solution alloys having high mixing entropy. USPC, No. US20130108502 A1, UT-BATTELLE, LLC, Oak Ridge, TN, Knoxville, 2013.Google Scholar
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).Google Scholar
Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Wei, S.H., Ferreira, L.G., Bernard, J.E., and Zunger, A.: Electronic properties of random alloys: Special quasirandom structures. Phys. Rev. B 42, 9622 (1990).CrossRefGoogle ScholarPubMed
Zunger, A., Wei, S.H., Ferreira, L.G., and Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).Google Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Huhn, W.P. and Widom, M.: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W. JOM 65, 1772 (2013).Google Scholar
Gao, M.C., Zhang, C., Gao, P., Zhang, F., Ouyang, L.Z., Widom, M., and Hawk, J.A.: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. (2017). (in press). doi: https://doi.org/10.1016/j.cossms.2017.08.001.Google Scholar
Ackermann, H., Inden, G., and Kikuchi, R.: Tetrahedron approximation of the cluster variation method for bcc alloys. Acta Metall. 37, 1 (1989).CrossRefGoogle Scholar
Sundman, B., Jansson, B., and Andersson, J.O.: The Thermo-Calc databank system. CALPHAD 9, 153 (1985).Google Scholar
Gulliver, G.H.: The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met. 9, 120 (1913).Google Scholar
Scheil, E.: Comments on the layer crystal formation. Z. Metallkd. 34, 70 (1942).Google Scholar
Lucas, M.S., Mauger, L., Munoz, J.A., Xiao, Y., Sheets, A.O., Semiatin, S.L., Horwath, J., and Turgut, Z.: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).Google Scholar
Lucas, M.S., Belyea, D., Bauer, C., Bryant, N., Michel, E., Turgut, Z., Leontsev, S.O., Horwath, J., Semiatin, S.L., McHenry, M.E., and Miller, C.W.: Thermomagnetic analysis of FeCoCr x Ni alloys: Magnetic entropy of high-entropy alloys. J. Appl. Phys. 113, 17A923 (2013).CrossRefGoogle Scholar
Le Page, Y. and Saxe, P.: Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 65, 104104 (2002).Google Scholar
Gao, M.C., Suzuki, Y., Schweiger, H., Doğan, Ö.N., Hawk, J., and Widom, M.: Phase stability and elastic properties of Cr–V alloys. J. Phys.: Condens. Matter 25, 075402 (2013).Google ScholarPubMed
Born, M. and Huang, K.: Dynamical Theory of Crystal Lattices, 1st ed. (Clarendon Press, Oxford, 1954).Google Scholar
Feng, B. and Widom, M.: Elastic stability and lattice distortion of refractory high entropy alloys. Mater. Chem. Phys. (2017). (in press). doi: https://doi.org/10.1016/j.matchemphys.2017.06.038.Google Scholar
Tian, L.Y., Wang, G., Harris, J.S., Irving, D.L., Zhao, J., and Vitos, L.: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).Google Scholar
Ge, H.J., Tian, F.Y., and Wang, Y.: Elastic and thermal properties of refractory high-entropy alloys from first-principles calculations. Comput. Mater. Sci. 128, 185 (2017).Google Scholar
Tian, F.Y., Varga, L.K., Shen, J., and Vitos, L.: Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 111, 350 (2016).CrossRefGoogle Scholar
Wang, Z., Guo, S., and Liu, C.T.: Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 66, 1966 (2014).Google Scholar
Zhang, B.L., Mu, Y., Gao, M.C., Meng, W.J., and Guo, S.M.: On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy. MRS Commun. 7, 78 (2017).Google Scholar
Sohn, S.W., Liu, Y.H., Liu, J.B., Gong, P., Prades-Rodel, S., Blatter, A., Scanley, B.E., Broadbridge, C.C., and Schroers, J.: Noble metal high entropy alloys. Scr. Mater. 126, 29 (2017).Google Scholar
Fultz, B., Anthony, L., Robertson, J.L., Nicklow, R.M., Spooner, S., and Mostoller, M.: Phonon modes and vibrational entropy of mixing in Fe–Cr. Phys. Rev. B 52, 3280 (1995).Google Scholar
Fultz, B.: Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247 (2010).CrossRefGoogle Scholar
Munoz, J.A., Lucas, M.S., Delaire, O., Winterrose, M.L., Mauger, L., Li, C.W., Sheets, A.O., Stone, M.B., Abernathy, D.L., Xiao, Y., Chow, P., and Fultz, B.: Positive vibrational entropy of chemical ordering in FeV. Phys. Rev. Lett. 107, 115501 (2011).Google Scholar
Supplementary material: PDF

Gao et al. supplementary material

Supplementary data

Download Gao et al. supplementary material(PDF)
PDF 227.6 KB