Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T10:57:01.122Z Has data issue: false hasContentIssue false

Comparison of the High-Temperature Deformation of Alumina-Zirconia and Alumina-Zirconia-Mullite Composites

Published online by Cambridge University Press:  03 March 2011

Tiandan Chen
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697-2575
Martha L. Mecartney*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697-2575
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

An alumina-based ceramic codispersed with 15 vol% zirconia and 15 vol% mullite (AZM) was synthesized by reactive processing, and the creep behavior was compared to alumina with 30 vol% zirconia (AZ). Constant stress compressive creep behavior for AZM exhibited a stress exponent of 2 and an activation energy of 770 KJ/mol, while a similar stress exponent but lower activation energy of 660 KJ/mol was found for AZ. The strain rate of AZM, however, was more than twice that of the AZ under the same deformation conditions, indicating a better potential for superplastic shape forming.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yoshizawa, Y. and Sakuma, T.: Improvement of tensile ductility in high-purity alumina due to magnesia addition. Acta. Metall. Mater. 40, 2943 (1992).CrossRefGoogle Scholar
2Vankatachari, R. and Raj, R.: Superplastic flow in fine-grained alumina. J. Am. Ceram. Soc. 69, 135 (1986).CrossRefGoogle Scholar
3Xue, L.A. and Chen, I.W.: Deformation and grain growth of low-temperature-sintered high-purity alumina. J. Am. Ceram. Soc. 73, 3518 (1990).CrossRefGoogle Scholar
4Kottada, R.S. and Chokshi, A.H.: The high temperature tensile and compressive deformation characteristics of magnesia doped alumina. Acta Mater. 48, 3905 (2000).CrossRefGoogle Scholar
5Xue, L.A., Wu, X. and Chen, I.W.: Superplastic alumina ceramics with grain-growth inhibitors. J. Am. Ceram. Soc. 74, 842 (1991).CrossRefGoogle Scholar
6French, J.D., Harmer, M.P., Chan, H.M. and Miller, G.A.: Coarsening-resistant dual-phase interpenetrating microstructures. J. Am. Ceram. Soc. 73, 2508 (1990).CrossRefGoogle Scholar
7Kim, B-N., Hiraga, K., Morita, K. and Sakka, Y.: A high-strain-rate superplastic ceramic. Nature 413, 288 (2001).CrossRefGoogle ScholarPubMed
8Kim, B-N., Hiraga, K., Morita, K. and Sakka, Y.: Superplasticity in alumina enhanced by codispersion of 10% zirconia and 10% spinel particles. Acta Mater. 49, 887 (2001).CrossRefGoogle Scholar
9Flacher, O. and Blandin, J.J.: Grain boundary sliding contribution to superplastic deformation in alumina-zirconia composites. J. Mater. Sci. 32, 3451 (1997).CrossRefGoogle Scholar
10Kim, B.N. and Hiraga, K.: Simulation of diffusional creep accompanied by grain growth in two-dimensional polycrystalline solids. Acta Mater. 48, 4151 (2000).CrossRefGoogle Scholar
11Calderon-Moreno, J.M. and Schehl, M.: Microstructure after superplastic creep of alumina-zirconia composites prepared by powder alcoxide mixtures. J. Eur. Ceram. Soc. 24, 393 (2004).CrossRefGoogle Scholar
12Wang, J.D. and Raj, R.: Interface effects in superplastic deformation of alumina containing zirconia, titania or hafnia as a second phase. Acta Metall. Mater. 39, 2909 (1991).CrossRefGoogle Scholar
13Yoshida, H., Ikuhara, Y. and Sakuma, T.: High-temperature creep resistance in rare earth-doped fine-grained Al2O3. J. Mater. Res. 13, 2597 (1998).CrossRefGoogle Scholar
14French, J.D., Zhao, J.H., Harmer, M.P., Chan, H.M. and Miller, G.A.: Creep of duplex microstructures. J. Am. Ceram. Soc. 77, 2857 (1994).CrossRefGoogle Scholar
15Chokshi, A.H.: An evaluation of grain boundary sliding contribution to creep deformation in polycrystalline alumina. J. Mater. Sci. 25, 3221 (1990).CrossRefGoogle Scholar
16Owen, D.M. and Chokshi, A.H.: The constant stress tensile creep behavior of a superplastic zirconia-alumina composite. J. Mater. Sci. 29, 5467 (1994).CrossRefGoogle Scholar
17Clarke, D.R.: High-temperature microstructure of a hot-pressed silicon nitride. J. Am. Ceram. Soc. 72, 1604 (1989).CrossRefGoogle Scholar
18Wolf, C., Kauermann, R., Hübner, H., Rodrigues, J.A. and Pandolfelli, V.C.: Effect of mullite-zirconia additions on the creep behavior of high-alumina refractories. J. Eur. Ceram. Soc. 15, 913 (1995).CrossRefGoogle Scholar
19Kajihara, K., Yoshizawa, Y. and Sakuma, T.: The enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2-doping. Acta Metall. Mater. 43, 1235 (1995).CrossRefGoogle Scholar
20Hwang, C.M.J. and Chen, I.W.: Effect of liquid phase on superplasticity of 2-mol%-Y2O3-stabilized zirconia polycrystals. J. Am. Ceram. Soc. 73, 1626 (1990).CrossRefGoogle Scholar
21Arellano-López, A.R., Meléndez-Martínez, J.J., Cruse, T.A., Koritala, R.E., Routbort, J.L. and Goretta, K.C.: Compressive creep of mullite containing Y2O3. Acta Mater. 50, 4325 (2002).CrossRefGoogle Scholar
22Yoon, C.K. and Chen, I.W.: Superplastic flow of two-phase ceramics containing rigid inclusions zirconia/mullite composites. J. Am. Ceram. Soc. 73, 1555 (1990).CrossRefGoogle Scholar
23Morita, K., Hiraga, K. and Kim, B-N.: Effect of minor SiO2 addition on the creep behavior of superplastic tetragonal ZrO2. Acta Mater. 52, 3355 (2004).CrossRefGoogle Scholar