Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T12:18:17.620Z Has data issue: false hasContentIssue false

Comparison of Ba2YCu3O7−δ thin films grown on various perovskite substrates by coevaporation

Published online by Cambridge University Press:  31 January 2011

Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M.P. Siegal
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R.B. van Dover
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
T.H. Tiefel
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J.H. Marshall
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C.D. Brandle
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
G. Berkstresser
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A.J. Strauss
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
R.E. Fahey
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
S. Sengupta
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
A. Cassanho
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
H.P. Jenssen
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

We have compared the quality of Ba2YCu3O7−δ (BYCO) films grown by the BaF2 process on (100) substrates of the perovskites LaAlO3, LaGaO3, NdAlO3, NdGaO3, LiBaF3, and SrTiO3. The films were grown by coevaporation of Y, Cu, and BaF2 followed by a two-stage anneal. The high temperature stage of the anneal, the part of the process during which the BYCO crystal structure and morphology develop, has been varied. LaAlO3 and SrTiO3 support much better films, both electrically and structurally, than the other substrates. Of the oxides, NdGaO3 supports the worst films, while films on LiBaF3 are nonconducting. These results emphasize the overriding importance of chemical compatibility in determining the suitability of a potential substrate material. Unless this criterion is satisfied, the issue of lattice matching is unimportant.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1See, for example, Gurvitch, M. and Fiory, A. T., Appl. Phys. Lett. 51, 1027 (1987).Google Scholar
2Fork, D. K., Ponce, F.A., Tramontana, J. C., Newman, N., Phillips, J.M., and Geballe, T.H., Appl. Phys. Lett. 58, 2432 (1991).Google Scholar
3Li, Q., Meyer, O., Xi, X. X., Geerk, J., and Linker, G., Appl. Phys. Lett. 55, 310 (1989); X.X. Xi, G. Linker, O. Meyer, E. Nold, B. Obst, F. Ratzel, R. Smithey, B. Strehau, F. Weschenfelder, and J. Geerk, Z. Phys. B 74, 13 (1989); B.H. Moeckly, S.E. Russek, D.K. Lathrop, R. A. Buhrman, J. Li, and J. W. Mayer, Appl. Phys. Lett. 57, 1687 (1990).Google Scholar
4Mogro-Campero, A., Hunt, B. D., Turner, L. G., Burell, M. C., and Balz, W.E., Appl. Phys. Lett. 52, 584 (1988); P. Madakson, J.J. Cuomo, D. S. Yee, R. A. Roy, and G. Scilla, J. Appl. Phys. 63, 2046 (1988).Google Scholar
5Humphreys, R. G., Satchell, J.S., Chew, N. G., Edwards, J.A., Goodyear, S. W., Blenkinsop, S. E., Dosser, O. D., and Cullis, A. G., Supercond. Sci. Technol. 3, 38 (1990).CrossRefGoogle Scholar
6Mankiewich, P. M., Schofield, J. H., Skocpol, W. J., Howard, R. E., Dayem, A.H., and Good, E., Appl. Phys. Lett. 51, 1753 (1987).CrossRefGoogle Scholar
7O'Bryan, H.M., Gallagher, P.K., Berkstresser, G.W., and Brandle, C.D., J. Mater. Res. 5, 183 (1990).CrossRefGoogle Scholar
8Lyons, W. G., Withers, R. S., Hamm, J. M., Anderson, A. C., Oates, D. E., Mankiewich, P. M., O'Malley, M. L., Bonetti, R. R., Williams, A. E., and Newman, N., Proc. 5th Conf. on Superconductivity and Applications, edited by Kao, T.H., Kwok, H.S., and Kaloyeros, A.E. (American Institute of Physics, New York, 1992), Vol. 251, p. 639.Google Scholar
9Arivalingam, G., private communication.Google Scholar
10Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., and Gambino, R.J., Phys. Rev. Lett. 58, 2684 (1987).CrossRefGoogle Scholar
11Sandstrom, R.L., Giess, E.A., Gallagher, W.J., Segumuller, A., Cooper, E.I., Chisholm, M.F., Gupta, A., Shinde, S., and Laibowitz, R.B., Appl. Phys. Lett. 53, 1874 (1988).Google Scholar
12Simon, R. W., Platt, C.E., Lee, A.E., Daly, K.P., Wire, M.S., Luine, J. W., and Urbanik, M., Appl. Phys. Lett. 53, 2677 (1988).Google Scholar
13Koren, G., Gupta, A., Giess, E.A., Segmiiller, A., and Lai-bowitz, R.B., Appl. Phys. Lett. 54, 1054 (1989).Google Scholar
14See, for example, Heteroepitaxy on Silicon: Fundamentals, Struc tures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R.J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988).Google Scholar
15Coutures, J. and Coutures, J. P., J. Solid State Chem. 52, 95 (1984).CrossRefGoogle Scholar
16NBS Monographs 25, Section 5 (1967).Google Scholar
17Hellman, E.S., Hartford, E.H., Brandle, C.D., Berkstresser, G.W., Jenssen, H. P., Cassanho, A., and Gabbe, D., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R. F. C., Harbison, J. P., Peercy, P. S., and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 53.Google Scholar
18Siegal, M.P., Phillips, J.M., Hsieh, Y-F., and Marshall, J.H., Physica C 172, 282 (1990).Google Scholar
19Siegal, M.P., Phillips, J.M., Dover, R.B. van, Tiefel, T.H., and Marshall, J. H., J. Appl. Phys. 68, 6353 (1990).Google Scholar
20Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
21Gyorgy, E. M., Dover, R. B. van, Jackson, K. A., Schneemeyer, L. F., and Waszczak, J. V., Appl. Phys. Lett. 55, 1915 (1989).CrossRefGoogle Scholar
22Hebard, A. F., Fleming, R. M., Short, K. T., White, A. E., Rice, C. E., Levi, A.F.J., and Eick, R.H., Appl. Phys. Lett. 55, 1915 (1989).Google Scholar
23Siegal, M.P., Phillips, J.M., Hebard, A.F., Dover, R.B. van, Farrow, R.C., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. 70, 4982 (1991).Google Scholar
24Feenstra, R., Lindemer, T. B., Budai, J. D., and Galloway, M. D., J. Appl. Phys. 69, 6569 (1991); A. Mogro-Campero and L. G. Turner, Appl. Phys. Lett. 58, 417 (1991); M. P. Siegal, S. Y. Hou, J. M. Phillips, T. H. Tiefel, and J. H. Marshall, J. Mater. Res. 7, 2658 (1992).Google Scholar
25Phillips, J.M., Siegal, M.P., Perry, C.L., and Marshall, J.H., IEEE Trans. Magn. 27, 1006 (1991).CrossRefGoogle Scholar