Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T23:56:28.981Z Has data issue: false hasContentIssue false

Comparative Study of Single Crystals and Laser-grown Films of V2O5

Published online by Cambridge University Press:  31 January 2011

J. Janicskó-Csáthy
Affiliation:
Department of Experimental Physics, University of Szeged, H-6720 Szeged, Dom t. 9, Hungary
A. Nagy
Affiliation:
Department of Experimental Physics, University of Szeged, H-6720 Szeged, Dom t. 9, Hungary
L. Nánai
Affiliation:
Department of Physics, JCYTFK, H-6720 Szeged, Dom t. 9, Hungary
W. Marine
Affiliation:
Department of Physics, University of Marseille, Marseille, F-13288 Cedex 9, France
S. P. Souto
Affiliation:
Laboratory of Solids, University of P. and M. Curie, Paris, F-75252 Cedex 05, France
M. Balkanski
Affiliation:
Laboratory of Solids, University of P. and M. Curie, Paris, F-75252 Cedex 05, France
Thomas F. George
Affiliation:
Office of the Chancellor/Departments of Chemistry and Physics & Astronomy, University of Wisconsin—Stevens Point, Stevens Point, Wisconsin 54481
Get access

Extract

Comparative investigations are carried out for spectral (Raman) electrical and structural properties of V2O5 single crystals and polycrystalline samples obtained by IR laser light illumination of pure metallic samples in an oxidizing atmosphere (air). It is shown that the structures grown on metallic plates in the field of laser light are predominantly V2O5 polycrystals. Raman measurements reveal that the main peaks, which are characteristic for single crystals, are also present in laser-driven samples but with different intensities. Some peaks are attributed to laser-grown thick films, which are not present in the single-crystalline phase. There are shifts in the peak positions indicating the existence of different force constants for films as compared with crystals. The activation energies obtained from the electrical properties (conductivity, impedance versus temperature) yield similar values except for the anisotropic characteristics of the single crystal where the values are a bit different along different crystallographic axes (unlike the polycrystalline oxide films made by the laser). The single-crystalline phase has a well-defined layered structure with well-defined shapes showing formed units of truncated oktaeders, while the film structure shows randomly distributed tubular micron-size structures with empty holes at the peripheral part of the irradiated area, and nanoscaled long and thin tubes well oriented along the direction of the incoming laser light in the central part of the irradiation spot.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fiemans, L., Clauws, P., Vennnik, J., and Dekeyser, W., Medeluigen van de Koninkligke Akademie voor Wettenschappen XLI, 3 (1979).Google Scholar
2.Nánai, L., Jelski, D., Hevesi, I., and George, T.F., J. Mater. Res. 8, 945 (1993).CrossRefGoogle Scholar
3.Gharbi, N., R’Kha, C., Ballutaud, D., Michaud, M., Livage, J., and Schiffmacher, G., J. Non-Cryst. Solids 46, 247 (1981).CrossRefGoogle Scholar
4.Nánai, L., Hevesi, I., Bunkin, F.V., and Luk’yanchuk, B.S., Spectrochim. Acta, Part A 43, 211 (1987).CrossRefGoogle Scholar
5.Mukheryev, A. and Wach, S.P., J. Less-Common Met. 92, 289 (1983).Google Scholar
6.Zhu, J.J., Jiang, J.Z., Lin, X.P., and Zhu, Y.Q., J. Mater. Sci. 35, 5787 (2000).Google Scholar
7.Dietrich, A., Catlow, C.R.A., and Maigret, B., Mol. Simul. 11, 251 (1993).CrossRefGoogle Scholar
8.Gratzke, U. and Simon, G., J. Phys. D: Appl. Phys. 24, 827 (1991).CrossRefGoogle Scholar
9.Jelski, D., Naánai, K., Vajtai, R., Hevesi, I., and George, T.F., Mater. Sci. Eng., A 173, 193 (1993).CrossRefGoogle Scholar
10.Siska, A., Konya, Z., Hernadi, K., Kiticsi, I., Kordas, K., and Vajtai, R., J. Mater. Res. 15, 2087 (2001).CrossRefGoogle Scholar
11.Kosacki, I., Massot, M., Balkanski, M., and Tuller, A.L., Mater. Sci. Eng., B 12, 345 (1992).CrossRefGoogle Scholar
12.Sanchez, C., Henry, M., Grenet, J.C., and Livage, J., J. Phys. C: Solid State Phys. 15, 7133 (1982).CrossRefGoogle Scholar
13.Mosset, A., Lecantt, P., Galy, J., and Livage, J., Phys. Mag. B 46, 137 (1982).CrossRefGoogle Scholar
14.Sanchez, C., Morineau, R., and Livage, J., Phys. Status Solidi A 76, 661 (1983).CrossRefGoogle Scholar
15.Jarzebski, Z.M., Oxide Semiconductors (Pergamon Press, Oxford, United Kingdom, 1973).Google Scholar
16.Perlnstein, J.H., J. Solid State Chem. 3, 217 (1971).CrossRefGoogle Scholar
17.Wautelet, M., Appl. Phys. A 50, 131 (1990).CrossRefGoogle Scholar
18.Nánai, L. and George, T.F., J. Mater. Res. 12, 283 (1997).CrossRefGoogle Scholar
19.Tim, G., Muster, J., Kristic, V., Park, J.G., Park, Y.W., Roth, S., and Burghard, M., Appl. Phys. Lett. 76, 1875 (2000).Google Scholar
20.Hevesi, I., Abdullayev, A., and Lebedew, V.S., Kristallographia 16, 334 (1971).Google Scholar
21.Volzhenski, D.S. and Pashkovski, M.V., Sov. Phys. Solid State 11, 950 (1963).Google Scholar
22.Nánai, L., Vajtai, R., and George, T.F., Infrared Phys. Technnol. 36, 281 (1995).CrossRefGoogle Scholar