Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T21:15:14.709Z Has data issue: false hasContentIssue false

Combustion syntheses for BaTi4O9 and PbxBa1x Ti4O9

Published online by Cambridge University Press:  31 January 2011

Zhimin Zhong
Affiliation:
Departments of Chemistry and Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210–1173
Patrick K. Gallagher
Affiliation:
Departments of Chemistry and Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210–1173
Get access

Abstract

BaTi4O9 and PbxBa1x Ti4O9, where x is 0.1, 0.2, 0.3, 0.4, or 0.5, have been prepared by a combustion synthesis process. The process starts with spray drying aqueous solutions of Pb(NO3)2, Ba(NO3)2, TiO(NO3)2, and β-alanine with appropriate ratios. Combustion reactions occur when heating the spray-dried products to 300 °C, which convert them to BaTi4O9 and PbxBa1xTi4O9 directly. PbxBa1xTi4O9 (x ≧ 0.1) are low temperature, metastable phases and have not been reported before. Pb0.5Ba0.5Ti4O9 is unstable above 800 °C and cannot be sintered. All PbxBa1xTi4O9 compositions will decompose by 1300 °C, the temperature for solid state synthesis of BaTi4O9. Single-phase PbxBa1xTi4O9 (x = 0.1, 0.2, 0.3, 0.4), however, have been sintered at relatively lower temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Stein, A., Keller, S. W., and Mallouk, T.E., Science 259, 1558 (1993).CrossRefGoogle Scholar
2. (a)Tsuei, C. C., Gupta, A., Trafas, G., and Mitzi, D., Science 263, 1259 (1994);CrossRefGoogle Scholar
(b)Krusin-Elbaum, L., Tsuei, C. C., and Gupta, A., Nature (London) 373, 679 (1995).CrossRefGoogle Scholar
3. (a)Merzhanov, A. G., in Combustion and Plasma Synthesis of High-Temperature Materials: Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings, edited by Munir, Z.A. and Holt, J.B. (VCH, New York, 1990), p. 1;Google Scholar
(b)Yi, H.C., and Moore, J. J., J. Mater. Sci. 25, 1159 (1990);CrossRefGoogle Scholar
(c)Holt, J. B., in Engineered Materials Handbook: Self-Propagating, High-Temperature Synthesis, Vol. 4, Ceramics and Glasses, edited by Lampman, S. R., Woods, M.S., and Zorc, T.B. (ASM INTERNATIONAL, Materials Park, OH, 1991), p. 227.Google Scholar
4. (a)Kourtakis, K., Robbins, M., and Gallagher, P. K., J. Solid State Chem. 82, 290 (1989); (b) 83, 230 (1989), (c) 84, 88 (1990);CrossRefGoogle Scholar
(d)Kourtakis, K., Robbins, M., Gallagher, P. K., and Tiefel, T., J. Mater. Res. 4, 1289 (1989).Google Scholar
5.Chandran, R. G. and Patil, K. C., Mater. Res. Bull. XXVII, 147 (1992).Google Scholar
6.Venkatachari, K. R., Huang, D., Ostrander, S. P., Schulze, W. A., and Stangle, G. C., J. Mater. Res. 10, 748 (1995).Google Scholar
7.Suresh, K., Kumar, N. R. S., and Patil, K. C., Adv. Mater. 3, 148 (1991).CrossRefGoogle Scholar
8.Zhang, Y. and Stangle, G. C., J. Mater. Res. 9, 1997 (1994).Google Scholar
9.Sekar, M. M. A. and Patil, K. C., J. Mater. Chem. 2, 739 (1992).Google Scholar
10.Zhong, Z. and Gallagher, P. K., J. Mater. Res. 10, 945 (1995);Google Scholar
Zhong, Z., Ph.D. Thesis, The Ohio State University, Columbus, OH (1994).Google Scholar
11.Hong, C. S., Ravindranathan, P., Agrawal, D. K., and Roy, R., J. Mater. Res. 9, 2398 (1994).Google Scholar
12.Lukaszewicz, K., Rocz. Chem. 31, 1111 (1957).Google Scholar
13.Hofmeister, W., Tillmanns, E., and Bauer, W. H., Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C40, 1510 (1984).Google Scholar
14.Masse, D. J., Purcel, R. A., Readey, D. W., Maguire, E. A., and Hartwig, C. P., Proc. IEEE 59, 1628 (1971).Google Scholar
15. (a)O'Bryan, H. M., Thomson, J., and Plourde, J.K., J. Am. Ceram. Soc. 57, 450 (1974);Google Scholar
(b)O'Bryan, H. M., and Thomson, J., J. Am. Ceram. Soc. 57, 522 (1974).Google Scholar
16.Fiedziuszko, S. J., Microwave J. Sept., 189 (1986).Google Scholar
17.Freer, R., Silic. Ind. 58 (9–10), 191 (1993).Google Scholar
18. (a)Negas, T., Yeager, G., Bell, S., and Amren, R., NIST Special Publication 804, 21 (1991);Google Scholar
(b)Negas, T. and Yeager, G., U.S. Patent 5262 370 (1993);Google Scholar
(c)Negas, T., Yeager, G., Bell, S., Coats, N., and Minis, I., Am. Ceram. Soc. Bull 72, 80 (1993).Google Scholar
19. (a)Inoue, Y., Niiyama, T., Asai, Y., and Sato, K., J. Chem. Soc. Commun. 7, 579 (1992);Google Scholar
(b)Inoue, Y., Japanese Patent 04 330 943 (1992);CrossRefGoogle Scholar
(c)Inoue, Y., Asai, Y, and Sato, K., J. Chem. Soc. Faraday Trans. 90, 797 (1994);Google Scholar
(d)Inoue, Y., Kikan Kagaku Sosetsu (Japan: Quarterly Survey of Chemistry) 23, 113 (1994).Google Scholar
20.Sayama, K. and Arakawa, H., J. Photochem. Photobiol. 77, 243 (1994).Google Scholar
21.Rase, D. E. and Roy, R., J. Am. Ceram. Soc. 38, 102 (1955).Google Scholar
22.Ritter, J. J., Roth, R. S., and Blendell, J. E., J. Am. Ceram. Soc. 69, 155 (1986).Google Scholar
23.Pfaff, G., J. Mater. Sci. Lett. 10, 129 (1991).Google Scholar
24.Pfaff, G., J. Mater. Chem. 2, 591 (1992).CrossRefGoogle Scholar
25. (a)Tanaka, I., Kojima, H., and Sudo, F., J. Cryst. Growth 76, 311 (1986);CrossRefGoogle Scholar
(b)Tanaka, I. and Kojima, H., J. Mater. Sci. 24, 959 (1989).Google Scholar
26.Tanaka, I., Ishikawa, J., and Kojima, H., Denki Kagaku oyobi Kogyo Butsuri Kagaku (Japan: Electrochemistry and Industrial Physical Chemistry, in English) 58, 503 (1990).Google Scholar
27.Fukuda, K., Kitoh, R., and Awai, I., J. Mater. Sci. 30, 1209 (1995).Google Scholar
28.Mhaisalkar, S. G., Readey, D. W., and Akbar, S. A., J. Am. Ceram. Soc. 74, 1894 (1991).Google Scholar
29. (a)Grammatico, J. P. and Lopez, J. M. P., J. Mater. Sci.: Mater. Elec. 3, 82 (1992);Google Scholar
(b)Dutta, P. K., Asiaie, R., Akbar, S. A., and Zhu, W., Chem. Mater. 6, 1542 (1994).Google Scholar
30.Shaw, F. V., Am. Ceram. Soc. Bull. 69, 1484 (1990).Google Scholar
31.Vallet-Regi, M., Ragel, V., Román, J., Martinez, J.L., Labeau, M., and González-Calbet, J.M., J. Mater. Res. 8, 138 (1993).Google Scholar
32. United States National Institute of Standard and Technology, Standard X-ray Diffraction Powder Patterns, JCPDS 34–70 (1984).Google Scholar
33.Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).Google Scholar
34.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976).Google Scholar
35.Zhong, Z., Gallagher, P. K., Loiacono, D. L., and Loiacono, G. M., Thermochim. Acta. 234, 225 (1994).CrossRefGoogle Scholar
36.Gaillard-Groleas, G., Lagier, M., and Sornette, D., Phys. Rev. Lett. 64, 1577 (1990).Google Scholar
37.Aykan, K., J. Am. Ceram. Soc. 51, 577 (1968).Google Scholar
38.Schmutzler, H. J., Antony, M. M., and Sandhage, K. H., J. Am. Ceram. Soc. 77, 721 (1994).Google Scholar
39.Arlt, G., Hennings, D., and De With, G., J. Appl. Phys. 58, 1619 (1985).Google Scholar