Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T01:42:22.489Z Has data issue: false hasContentIssue false

Combined effect of grain size and tensile stresses on the ferroelectric properties of sol-gel (Pb,La)TiO3 thin films

Published online by Cambridge University Press:  31 January 2011

M. Alguerá
Affiliation:
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientificas, Cantoblanco 28049, Madrid, Spain
L. Pardo
Affiliation:
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientificas, Cantoblanco 28049, Madrid, Spain
E. Snoeck
Affiliation:
Centre d'Elaboration des Materiaux et dés Etudes Strucuturales, Centre National de la Recherche Scientifique, BP4347, F-31055 Toulouse, France
Get access

Abstract

Transmission electron microscopy has shown that the grain size of sol-gel-prepared lanthanum-modified lead titanate films increases from ∼100 to ∼1 μm when the excess of PbO in the precursor solution is reduced from 20 to 10 mol%. Switchable polarization is higher in the films with a smaller grain size. Profilometry and the temperature dependence of the dielectric permittivity indicate that films are tensile stressed by the substrate. The grain-size effect on polarization switching is explainedby taking into account this tensile stress, which is thought to induce some a-domain orientation and 90° domain wall clamping in the grains attached to the substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ijima, K., Takayama, R., Tomita, Y., and Ueda, I., J. Appl. Phys. 60, 2914 (1986).CrossRefGoogle Scholar
2.Nagao, N., Takeuchi, T., and Ijima, K., Jpn. J. Appl. Phys. 32, 4065 (1993).Google Scholar
3.Adachi, H., Mitsuyu, T., Yamazaki, O., and Wasa, K., J. Appl. Phys. 60, 736 (1986).Google Scholar
4.Yamamoto, T., Igarashi, H., and Okazaki, K., J. Am. Ceram. Soc. 66, 363 (1983).CrossRefGoogle Scholar
5.Polla, D.L. and Francis, L.F., MRS Bull. 21(7), 59 (1996).CrossRefGoogle Scholar
6.Algueró, M., Pardo, L., and Calzada, M.L., in Proceedings 10th IEEE International Symposium on Applications of Ferroelectrics, East Brunswick, NJ, Aug 18–21, 1996, edited by Kulwicki, B.M., Amin, A., and Safari, A. (IEEE, Piscataway, NJ, 1996), p. 797.Google Scholar
7.Sirera, R. and Calzada, M.L., Mater. Res. Bull. 30, 11 (1995).CrossRefGoogle Scholar
8.Algueró, M., Calzada, M.L., Quintana, C., and Pardo, L., Appl. Phys. A 68, 583 (1999).Google Scholar
9.Algueró, M., Calzada, M.L., and Pardo, L., J. Mater. Res. 14, 4302 (1999).CrossRefGoogle Scholar
10.Spierings, G.A.C.M, Dormans, G.J.M, Moors, W.G.J, Ulenaers, M.J.E, and Larsen, P.K., J. Appl. Phys. 78, 1926 (1995).Google Scholar
11.Mendiola, J., Calzada, M.L., Ramos, P., Martin, M.J., and Agulló-Rueda, F., Thin Solid Films 315, 195 (1998).Google Scholar
12.Phillips, N.J., Calzada, M.L., and Milne, S.J., J. Non-Cryst. Solids 147&148, 285 (1992).Google Scholar
13.Ramos, P., Mendiola, J., Carmona, F., Calzada, M.L., and Alemany, C., Phys. Status Solidi (a) 156, 119 (1996).Google Scholar
14.Keizer, K. and Burggraff, A.J., Phys. Status Solidi (a) 26, 561 (1974).CrossRefGoogle Scholar
15.Stoney, G.G., Proc. R. Soc. London, Sr. A 82, 172 (1909).Google Scholar
16.Samara, G.A., Phys. Rev. 151, 378 (1966).CrossRefGoogle Scholar
17.Samara, G.A., Ferroelectrics 2, 277 (1971).Google Scholar
18.Tuttle, B.A., Garino, T.J., Voigt, J.A., Headley, T.J., Dimos, D., and Eatough, M.O., NATO ASI Ser. E: Appl. Sci. 284, 117 (1995).Google Scholar
19.Kosec, M., Huang, Y., Sato, E., Bell, A., Setter, N., Drazic, G., Bernik, S., and Beltram, T., NATO ASI Ser. A: Appl. Sci. 284, 177 (1995).Google Scholar
20.Fox, G.R., Krupanidhi, S.B., and More, K.L., J. Mater. Res. 8, 2191 (1993).Google Scholar
21.Demczyk, B.G., Rai, R.S., and Thomas, G., J. Am. Ceram. Soc. 73, 615 (1990).Google Scholar
22.King, G. and Goo, E.K., J. Am. Ceram. Soc. 73, 1534 (1990).CrossRefGoogle Scholar
23.Arlt, G., Ferroelectrics 104, 217 (1990).Google Scholar
24.Arlt, G. and Sasko, P., J. Appl. Phys. 51, 4956 (1980).Google Scholar
25.Lynch, C.S., Chen, L., Suo, Z., and McMeeking, R., J. Intell. Mater. Syst. Struct. 6, 191 (1995).Google Scholar
26.Kumazawa, T., Kumagai, Y., Miura, H., and Kitano, M., Appl. Phys. Lett. 72, 608 (1998).Google Scholar
27.Trolier-McKinstry, S., Shepard, J.F. Jr, Lacey, J.L., Su, T., Zavala, G., and Fendler, J., Ferroelectrics 206–207, 381 (1998).CrossRefGoogle Scholar