Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:56:04.693Z Has data issue: false hasContentIssue false

Cold white light generation from hafnium oxide films activated with Ce3+, Tb3+, and Mn2+ ions

Published online by Cambridge University Press:  31 January 2011

Rafael Martínez-Martínez
Affiliation:
Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca 69000, México
Enrique Álvarez
Affiliation:
Departamento de Física, Universidad de Sonora (UNISON), Hermosillo, Sonora 83000, México
Adolfo Speghini
Affiliation:
DiSTeMeV, Università di Verona, and INSTM, UdR Verona, I-37029 San Floriano, Verona, Italy
Ciro Falcony
Affiliation:
Centro de Investigación y de Estudio Avanzados del IPN, Departamento de Física, 07000 México, D.F., México
Ulises Caldiño*
Affiliation:
Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, D.F., México
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hafnium oxide films doubly doped with CeCl3 and TbCl3 and triply doped with CeCl3, TbCl3, and MnCl2 were deposited at 300 °C with the ultrasonic spray pyrolysis technique. The green and yellow emissions of Tb3+ ions and the yellow-red emission of Mn2+ ions can be generated upon ultraviolet (UV) excitation via a nonradiative energy transfer from Ce3+ to Tb3+ and Ce3+ to Mn2+. In the doubly doped film Ce3+ → Tb3+ energy transfer via an electric dipole–quadrupole interaction appears to be the most probable transfer mechanism; the efficiency of this transfer is about 81% upon excitation at 270 nm. In the HfO2 films activated with Ce3+, Tb3+, and Mn2+ the efficiency of energy transfer from Ce3+ to Tb3+ and Mn2+ ions is enhanced by increasing the Mn2+ concentration, up to about 76% for the film with the highest manganese content (1.6 at.%). In addition, it is demonstrated that these triply doped films can generate cold white light emission upon excitation at 270 nm (peak emission wave length of an AlGaN/GaN-based LEDs).

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rack, P.D., Naman, A., Holloway, P.H., Sun, S.S., Tuenge, R.T.Materials used in electroluminescent displays. MRS Bull. 21, 49 (1996)CrossRefGoogle Scholar
2.Zhang, J.C., Parent, C., Le Flem, G., Hagenmuller, P.White light emitting glasses. J. Solid State Chem. 93, 17 (1991)CrossRefGoogle Scholar
3.El Jouhari, N., Parent, C., Le Flem, G.Photoluminescence of Ce3+, Tb3+, and Mn2+ in glasses of base composition LaMgB5O10. J. Solid State Chem. 123, 398 (1996)CrossRefGoogle Scholar
4.González-Ortega, J.A., Tejeda, E.M., Perea, N., Hirata, G.A., Bosze, E.J., McKittrick, J.White light emission from rare earth activated yttrium silicate nanocrystalline powders and thin films. Opt. Mater. 27, 1221 (2005)CrossRefGoogle Scholar
5.Caldiño, U., Speghini, A., Bettinelli, M.Optical spectroscopy of zinc metaphosphate glasses activated by Ce3+ and Tb3+ ions. J. Phys. Condens. Matter 18, 3499 (2006)CrossRefGoogle Scholar
6.Caldiño G, U.On the Ce–Mn clustering in CaF2 in which the Ce3+ → Mn2+ energy transfer occurs. J. Phys. Condens. Matter 15, 3821 (2003)Google Scholar
7.Martínez-Martínez, R., García-Hipólito, M., Ramos-Brito, F., Hernández-Pozos, J.L., Caldiño, U., Falcony, C.Blue and red photoluminescence from Al2O3:Ce3+:Mn2+ films deposited by spray pyrolysis. J. Phys. Condens. Matter 17, 3647 (2005)CrossRefGoogle Scholar
8.Caldiño, U., Hernández-Pozos, J.L., Flores, C., Speghini, A., Bettinelli, M.Photoluminescence of Ce3+ and Mn2+ in zinc metaphosphate glasses. J. Phys. Condens. Matter 17, 7297 (2005)CrossRefGoogle Scholar
9.Martínez-Martínez, R., García Hipólito, M., Huerta, L., Rickards, J., Caldiño, U., Falcony, C.Studies on blue and red photoluminiscence from Al2O3:Ce3+:Mn2+ coatings synthesized by spray pyrolysis technique. Thin Solid Films 515, 607 (2006)CrossRefGoogle Scholar
10.Martínez-Martínez, R., García, M., Speghini, A., Bettinelli, M., Falcony, C., Caldiño, U.Blue-green-red luminescence from CeCl3 and MnCl2 doped hafnium oxide layers prepared by ultrasonic spray pyrolysis. J. Phys. Condens. Matter 20, 395205 (2008)CrossRefGoogle Scholar
11.Martínez-Martínez, R., Speghini, A., Bettinelli, M., Falcony, C., Caldiño, U.White light generation through the zinc metaphosphate glass activated by Ce3+, Tb3+ and Mn2+ ions. J. Lumin. 129, 1276 (2009)CrossRefGoogle Scholar
12.Caldiño G, U., de la Cruz, C., Muñoz H, G., Rubio O, J.Ce3+ → Eu2+ energy transfer in CaF2. Solid State Commun. 69, 347 (1989)CrossRefGoogle Scholar
13.Caldiño G, U.Energy transfer in CaF2 doped with Ce3+, Eu2+ and Mn2+ ions. J. Phys. Condens. Matter 15, 7127 (2003)Google Scholar
14.Sundqvist, J., Harsta, A., Aarik, J., Kukli, K., Aidla, A.Atomic layer deposition of polycrystalline HfO2 films by the HfI4–O2 precursor combination. Thin Solid Films 427, 147 (2003)CrossRefGoogle Scholar
15.Wilk, G.D., Wallace, R.M., Anthony, J.M.High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001)CrossRefGoogle Scholar
16.Huang, L.H., Wang, X.J., Lin, H., Liu, X.R.Luminescence properties of Ce3+ and Tb3+ doped rare earth borate glasses. J. Alloys Compd. 316, 256 (2001)CrossRefGoogle Scholar
17.García-Hipólito, M., Caldiño, U., Alvarez-Fragoso, O., Alvarez-Pérez, M.A., Martínez-Martínez, R., Falcony, C.Violet-blue luminescence from hafnium oxide layers doped with CeCl3 prepared by spray pyrolysis process. Phys. Status Solidi 204, 2355 (2007)CrossRefGoogle Scholar
18.de Graaf, D., Stelwagen, S.J., Hintzen, H.T., de With, G.Tb3+ luminescence as a tool to study clustering of lanthanide ions in oxynitride glasses. J. Non-Cryst. Solids 325, 29 (2003)CrossRefGoogle Scholar
19.Weber, M.J.Optical properties of Yb3+ and Nd3+–Yb3+ energy transfer in YAlO3. Phys. Rev. B 4, 3153 (1971)CrossRefGoogle Scholar
20.Louis, M., Hubert, S., Simoni, E., Gesland, J.Y.Energy transfer between lanthanide and actinide ions in LiYF4. Opt. Mater. 6, 121 (1996)CrossRefGoogle Scholar
21.Dexter, D.L.A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar
22.Blasse, G.Energy transfer in oxidic phosphors. Philips Res. Rep. 24, 131 (1969)Google Scholar
23.Verstegen, J.M.P.J., Sommerdijk, J.L., Verriet, J.G.Cerium and terbium luminescence in LaMgAl11O19. J. Lumin. 6, 425 (1973)CrossRefGoogle Scholar