Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T10:35:55.647Z Has data issue: false hasContentIssue false

Cold isostatic compaction of nano-size powders: Surface densification and dimensional asymmetry

Published online by Cambridge University Press:  31 January 2011

Wenxia Li
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, Ohio 43202
John J. Lannutti
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, Ohio 43202
Get access

Abstract

Cold isostatic pressing (CIP) is often used in the compaction of nano-sized powders. For technological reasons, however, uniaxial pressing prior to CIP takes place. This paper reveals the first quantitative measurements of density gradients within and the asymmetric sintering response of nanoscale zirconia compacts formed by (i) simple uniaxial compaction and (ii) specific ratios of uniaxial and CIP pressure. We find that CIP forms an exterior “skin” of higher but variable surface density and decreases the width of the density distribution. It does not eliminate density gradients; nonuniform shrinkage still occurs during sintering. The high- and low-density zones (the moving and fixed ram ends, respectively) that form during uniaxial compaction are reversed during CIP. Considering both density distribution width and spring-back cracking, the “best” uniaxial-CIP pressure combination is 1–20 ksi for this particular powder and an L/D of 1.0. The greater final compaction of the low-density zone during CIP causes relatively large variations in final dimensions (nearly 400 microns) in spite of the smaller density distribution width. The usually neglected uniaxial pressing step has definite technological impacts on the production of nanostructured components via compaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mayo, M.J., Int. Mater. Rev. 41, 85 (1996).CrossRefGoogle Scholar
2.Groza, J.R. and Dowding, R.J., Nanostruct. Mater. 7, 749 (1996).CrossRefGoogle Scholar
3.Rahaman, M.N., Ceramic processing and sintering (Marcel Dekker, New York, 1995), pp. 296.Google Scholar
4.Whittemore, J., in Ceramic Processing Before Firing: Particle compaction, edited by Onoda, G.Y. and Hench, L.L. (John Wiley & Sons, New York, 1978), pp. 343347.Google Scholar
5.Prokhorov, I.Yu., Akimov, G. Ya, Timchenko, V.M., and Vasli’ev, A.D., Refract. Ind. Ceram. 38, 305 (1998).CrossRefGoogle Scholar
6.Galusek, D., Znasik, P., and Majling, J., J. Mater. Sci. Lett. 18, 1347 (1999).CrossRefGoogle Scholar
7.Larsson, P.L., Biwa, S., and Storakers, B., Acta Mater. 44, 3655 (1996).CrossRefGoogle Scholar
8.Ramakrishnan, K.N., Nagarajan, R., RamaRao, G.V., and Venkadesan, S., Mater. Lett. 33, 191 (1997).CrossRefGoogle Scholar
9.Miyata, N., Ishida, Y., Shiogail, T., and Matsuo, Y., J. Ceram. Soc. Jpn. 104, 752 (1996).CrossRefGoogle Scholar
10.Lannutti, J. and Fronk, D., in Science of Whitewares: Die design, computed tomography, and modeling, edited by Carty, W.M. and Stinton, C.W. (Am. Ceram. Soc., Westerville, OH, 2000), pp. 319–325, 345349.Google Scholar
11.Vering, H.J., J. Mater. Sci. 28, 2757 (1993).CrossRefGoogle Scholar
12.Veringa, H.J., J. Mater. Sci. 26, 5985 (1991).CrossRefGoogle Scholar
13.Lu, P.K. and Lannutti, J., J. Am. Ceram. Soc. 83, 1393 (2000).CrossRefGoogle Scholar
14.Lu, P., Lannutti, J.J., Klobes, P., and Meyer, K., J. Am. Ceram. Soc. 83, 518 (2000).CrossRefGoogle Scholar
15.Phillips, D.H. and Lannutti, J.J., Am. Ceram. Soc. Bull. 72, 69 (1993).Google Scholar
16.Phillips, D.H. and Lannutti, J.J., NDT&E Int. 30, 339 (1997).CrossRefGoogle Scholar
17.Kong, C.M. and Lannutti, J.J., J. Am. Ceram. Soc. 83, 685 (2000).CrossRefGoogle Scholar
18.Coppersmith, S.N., Physica D 107, 183 (1997).CrossRefGoogle Scholar
19.Lu, P.K., Ph.D. Dissertation, The Ohio State University (2002).Google Scholar
20.Lannutti, J.J., Mater. Res. Soc. Bull. 22, 38 (1997).CrossRefGoogle Scholar
21.Lannutti, J.J., Deis, T.A., Kong, C.M., and Phillips, D.H., Am. Ceram. Soc. Bull. 76, 53 (1997).Google Scholar
22.Li, W., Nam, J., and Lannutti, J., Metall. Mater. Trans. 33A, 165 (2001).CrossRefGoogle Scholar
23.Favrot, N., Besson, J., Colin, C., and Delannay, F., J. Am. Ceram. Soc. 82, 1153 (1999).CrossRefGoogle Scholar
24.Munitz, A., Livne, Z., Rawers, J.C., and Fields, R.J., Nanostruct. Mater. 9, 89 (1997).CrossRefGoogle Scholar
25.Fleck, N.A., Acta Metall. Mater. 43, 3177 (1995).CrossRefGoogle Scholar
26.Larsson, P.L., Biwa, S., and Storakers, B.. Acta Mater. 44, 3655 (1996).CrossRefGoogle Scholar
27.Xu, J. and McMeeking, R.M., Int. J. Mech. Sci. 34, 167 (1992).CrossRefGoogle Scholar
28.Wang, J., J. Am. Ceram. Soc. 75, 2627 (1992).CrossRefGoogle Scholar
29.Matsuo, Y., Nishimura, T., Yasuda, K., Jinbo, K., and Kimura, S., J. Ceram. Soc. Jpn. 99, 187 (1991).CrossRefGoogle Scholar
30.Galusek, D., Znasik, P., and Majling, J., J. Mater. Sci. Lett. 18, 1347 (1999).CrossRefGoogle Scholar
31.Zhang, S. and Lu, G.Q., Mater. Manuf. Process. 10, 773 (1995).CrossRefGoogle Scholar
32.Shinagawa, K. and Hirashima, Y., Met. Mater. (Seoul) 4, 350 (1998).CrossRefGoogle Scholar