Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T21:32:50.129Z Has data issue: false hasContentIssue false

Co-casting and optical characteristics of transparent segmented composite Er:YAG laser ceramics

Published online by Cambridge University Press:  31 January 2011

Venkatraman Gopalan
Affiliation:
Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Charles Kraisinger
Affiliation:
AMDC, II-VI Incorporated, Saxonburg, Pennsylvania 16056
Mark Dubinskii
Affiliation:
U.S. Army Research Laboratory, RDRL-SEE-O, Adelphi, Maryland 20783
Gregory J. Quarles
Affiliation:
VLOC, II-VI Incorporated, New Port Richey, Florida 34655
Get access

Abstract

A novel colloidal co-casting process was developed to fabricate laser quality, multisegment composite ceramic laser gain materials. The approach was demonstrated for a three segment transparent composite rod 62 mm long by 3 mm diameter consisting of undoped yttrium aluminus garnet (YAG), 0.25% Er:YAG, and 0.5% Er:YAG. The Er concentration profile in the composite has steep, controllable gradients at the segment interfaces, while maintaining constant dopant concentrations within each segment. The composite rod has 84% transmittance at 1645 nm (the lasing wavelength) with a scatter loss of 0.4% cm−1. Laser operation of such a composite Er:YAG ceramic rod was demonstrated for the first time, with nearly equivalent lasing behavior to an Er:YAG single crystal rod.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ikesue, A., Furasato, I., Kamata, K.Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method. J. Am. Ceram. Soc. 78, (1)225 (1995)CrossRefGoogle Scholar
2.Spariosu, K., Birnbaum, M.Intracavity 1.549-µm pumped 1.634-µm Er:YAG lasers at 300 K. IEEE J. Quantum Electron. 30, (4)1044 (1994)CrossRefGoogle Scholar
3.Setzler, S.D., Francis, M.P., Young, Y.E., Konves, J.R., Chicklis, E.P.Resonantly pumped eyesafe erbium lasers. IEEE J. Sel. Top. Quantum Electron. 11, (3)645 (2005)CrossRefGoogle Scholar
4.Garbuzov, D., Kudryashov, I., Dubinskii, M.Resonantly diode laser pumped 1.6-µm-erbium-doped yttrium aluminum garnet solid-state laser. Appl. Phys. Lett. 86, 131115 (2005)CrossRefGoogle Scholar
5.Garbuzov, D., Kudryashov, I., Dubinskii, M.110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-µm Er:YAG laser. Appl. Phys. Lett. 87, 121101 (2005)CrossRefGoogle Scholar
6.Ikesue, A., Aung, Y.L.Ceramic laser materials. Nat. Photonics 2, 721 (2008)CrossRefGoogle Scholar
7.Lu, J., Lu, J., Murai, T., Takaichi, K., Uematsu, T., Ueda, K., Yagi, H., Yanagitani, T., Akiyama, Y., Kaminskii, A.A.Development of Nd;YAG ceramic lasers, in OSA TOPSAdvanced Solid-State Lasers Vol. 68 edited by M.E. Fermann and L.R. Marshall (Optical Society of America, Washington, DC 2002)507Google Scholar
8.Lee, S-H., Kochawattana, S., Messing, G.L., Dumm, J.Q., Quarles, G., Castillo, V.Solid-state reactive sintering of transparent polycrystalline Nd;YAG ceramics. J. Am. Ceram. Soc. 89, (6)1945 (2006)CrossRefGoogle Scholar
9.Lee, S-H., Kupp, E.R., Stevenson, A.J., Anderson, J.M., Messing, G.L., Li, X., Dickey, E.C., Dumm, J.Q., Simonaitis-Castillo, V.K., Quarles, G.J.Hot isostatic pressing of transparent Nd:YAG ceramics. J. Am. Ceram. Soc. 92, (7)1456 (2009)CrossRefGoogle Scholar
10.Kochawattana, S., Stevenson, A.J., Lee, S-H., Ramirez, M., Gopalan, V., Dumm, J.Q., Messing, G.L.Sintering and grain growth in SiO2 doped Nd:YAG. J. Eur. Ceram. Soc. 28, 1527 (2008)CrossRefGoogle Scholar
11.Ikesue, A., Aung, Y.L., Taira, T., Kamimura, T., Yoshida, D., Messing, G.L.Progress in ceramic lasers. Annu. Rev. Mater. Res. 36, 397 (2006)CrossRefGoogle Scholar
12.Ikesue, A., Yoshida, K.Influence of pore volume on laser performance of Nd:YAG ceramics. J. Mater. Sci. 34, 1189 (1999)CrossRefGoogle Scholar
13.Fabrichnaya, O., Seifert, H.J., Weiland, R., Ludwig, T., Aldinger, F., Navrotsky, A.Phase equilibria and thermodynamics in the Y2O3–Al2O3–SiO2 system. Z. Metallkd. 92, 1083 (2001)Google Scholar
14.Hanson, F.Improved laser performance at 946 and 473 nm from a composite NdY3Al5O12 rod. Appl. Phys. Lett. 66, (26)3549 (1995)CrossRefGoogle Scholar
15.Tsunekane, M., Taguchi, N., Inaba, H.Reduction of thermal effects in a diode-end-pumped, composite Nd:YAG rod with a sapphire end. Appl. Opt. 37, (15)3290 (1998)CrossRefGoogle Scholar
16.Ikesue, A., Aung, Y.L.Synthesis and performance of advanced ceramic lasers. J. Am. Ceram. Soc. 89, (6)1936 (2006)CrossRefGoogle Scholar
17.Mistler, R.E., Twiname, E.R.Tape Casting: Theory and Practice (American Ceramic Society, Westerville, OH 2000)Google Scholar
18.Yagi, H., Takaichi, K., Ueda, K., Yamasaki, Y., Yanagitani, T., Kaminskii, A.A.The physical properties of composites YAG ceramics. Laser Phys. 15, (9)1338 (2005)Google Scholar
19.Yagi, H., Yanagitani, T., Takaichi, K., Ueda, K., Kaminskii, A.A.Characterizations and laser performance of highly transparent Nd3+:Y3Al5O12 laser ceramics. Opt. Mater. 29, 1258 (2007)CrossRefGoogle Scholar
20.Messing, G.L., Kupp, E.R., Lee, S.H., Juwondo, G.Y., Stevenson, A.J.Method for manufacture of transparent materials. U.S. Patent Application No. 12 283 610 (2008)Google Scholar
21.Ramirez, M.O., Wisdom, J., Li, H., Aung, Y.L., Stitt, J., Messing, G.L., Dierolf, V., Liu, Z., Ikesue, A., Byer, R.L., Gopalan, V.3-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials. Opt. Exp. 16, (9)5966 (2008)CrossRefGoogle Scholar
22.Ikesue, A., Aung, Y.L., Yoda, T., Nakayama, S., Kamimura, T.Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing. Opt. Mater. 29, 1289 (2007)CrossRefGoogle Scholar