Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T20:08:58.975Z Has data issue: false hasContentIssue false

Chemistry, microstructure, and electrical properties at interfaces between thin films of titanium and alpha (6H) silicon carbide (0001)

Published online by Cambridge University Press:  03 March 2011

L.M. Porter
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
R.F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
J.S. Bow
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
M.J. Kim
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
R.W. Carpenter
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
R.C. Glass
Affiliation:
Westinghouse Science and Technology Center, Westinghouse Corporation, Pittsburgh, Pennsylvania 15235
Get access

Abstract

Epitaxial thin films (4–1000 Å) of Ti contacts have been deposited via UHV electron beam evaporation at room temperature on monocrystalline, n-type, alpha (6H)-SiC(0001). The interfacial chemistry and microstructure, and the electrical properties, were investigated at room temperature and after annealing at 700 °C up to 60 min. High resolution TEM analyses revealed the formation during annealing of reaction zones consisting of Ti5Si3 and TiC. The corresponding electrical properties exhibited considerable stability except after an initial 20 min anneal. Current-voltage (I-V) measurements showed that the Ti contacts were rectifying with low ideality factors (n < 1.09) and typical leakage currents of 5 × 10−7 A/cm2 at −10 V. The Schottky barrier heights calculated from x-ray photoelectron spectroscopy and I-V and V-V measurements were between 0.79 and 0.88 eV for the as-deposited contacts and between 0.86 and 1.04 eV for the annealed contacts.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Saxton, W. O., Pitt, T. J., and Homer, M., Ultramicroscopy 4, 343 (1979).CrossRefGoogle Scholar
2Handbook of X-ray Photoelectron Spectroscopy, edited by Wagner, CD., Riggs, W. M., Davis, L. E., and Moulder, J. F. (Perkin-Elmer Corp., Eden Prairie, MN, 1979).Google Scholar
3Waldrop, J. R. and Grant, R. W., Appl. Phys. Lett. 62, 2685 4 (1993).CrossRefGoogle Scholar
4Fenner, D. B., Biegelsen, D. K., and Bringans, R. D., J. Appl. Phys. 66, 419 (1989).CrossRefGoogle Scholar
5Taylor, J. A., Lancaster, G. M., Ignatiev, A., and Rabalais, J. W., J. Chem. Phys. 68, 1776 (1978).CrossRefGoogle Scholar
6Smith, K. L. and Black, K. M., J. Vac. Sci. Technol. A 2, 744 8 (1984).Google Scholar
7Auger and X-ray Photoelectron Spectroscopy, 2nd ed., Practical Surface Analysis, edited by Brigs, D. and Seah, M. P. (John Wiley & Sons, New York, 1990), Vol. 1.Google Scholar
8Kaplan, R., Surf. Sci. 215, 111 (1989).CrossRefGoogle Scholar
9Tung, R. T., Phys. Rev. B 45, 13509 (1992).CrossRefGoogle Scholar
10Palmour, J. W., private communication (Cree Research, Inc., Research Triangle Park, NC, 1992).Google Scholar
11Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, Inc., New York, 1981).Google Scholar
12Waldrop, J. R., Grant, R. W., Wang, Y. C., and Davis, R. F., J. Appl. Phys. 72, 4757 (1992).CrossRefGoogle Scholar
13Feldman, L. C. and Mayer, J. W., Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1986).Google Scholar
14Sitar, Z., Smith, L. L. S., and Davis, R. F., J. Cryst. Growth, 141, 11 (1994).CrossRefGoogle Scholar
15Mader, W. and Necker, G., in Metal-Ceramic Interfaces, edited by Ruhle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergamon Press, New York, 1990).Google Scholar
16Merkle, K. L., Buckett, M. I., and Gao, Y., Acta Metall. Mater. 40, S249 (1992).CrossRefGoogle Scholar
17Senzaki, K. and Kumashiro, Y., Bull. Electrotech. Lab. Jpn. 41, 593 (1977).Google Scholar
18Samsonov, G. V., Okhremchuk, L. N., Podgrushko, N. F., Podchernyaeva, I. A., and Fomenko, V. S., Inorg. Mater. 12, 720 (1976).Google Scholar
19Phase Diagrams of Binary Titanium Alloys, Monograph Series on Alloy Phase Diagrams, edited by Murray, J. L. (ASM INTERNATIONAL, Metals Park, OH, 1987).Google Scholar
20Barin, I., Thermochemical Data of Pure Substances (VCH, New York, 1989), Vol. 2.Google Scholar
21JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, edited by Chase, M. W. Jr., Davies, C. A., Downey, J. R. Jr., Frurip, D. J., McDonald, R. A., and Syverud, N. A. (The American Chemical Society and The National Institute of Physics for the National Bureau of Standards, Midland, MI, 1985), Vol. 14.Google Scholar
22Purdy, G. R., Weidel, D. H., and Kirkaldy, J. S., Trans. Metall. Soc. 230, 1025 (1964).Google Scholar
23Nathan, M. and Ahearn, J. S., J. Appl. Phys. 70, 811 (1991).CrossRefGoogle Scholar
24Ohdomari, I., Sha, S., Aochi, H., and Chikyow, T., J. Appl. Phys. 62, 3747 (1987).CrossRefGoogle Scholar
25Pai, C. S., Hanson, CM., and Lau, S.S., J. Appl. Phys. 57, 618 (1985).CrossRefGoogle Scholar
26Chou, T. C., Joshi, A., and Wadsworth, J., J. Mater. Res. 6, 796 (1991).CrossRefGoogle Scholar
27Chou, T. C., Joshi, A., and Wadsworth, J., J. Vac. Sci. Technol. A 9, 1525 (1991).CrossRefGoogle Scholar
28Backhaus-Ricoult, M., in Metal-Ceramic Interfaces, edited by Ruhle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergamon Press, New York, 1990).Google Scholar
29Nathan, M. and Ahearn, J. S., Mater. Sci. Eng. A126, 225 (1990).CrossRefGoogle Scholar
30Chamberlain, M. B., Thin Solid Films 72, 305 (1980).CrossRefGoogle Scholar
31Bellina, J. J. Jr. and Zeller, M. V., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 265.Google Scholar
32Rhodes, C. G. and Spruling, R. A., in Recent Advances in Composites in the United States and Japan, edited by Vinson, J. R. and Taya, M. (American Society for Testing and Materials, Philadelphia, PA, 1985).Google Scholar
33Backhaus-Ricoult, M., Ber. Bunsenges. Phys. Chem. 93, 1277 (1989).CrossRefGoogle Scholar
34Gotman, I., Gutmanas, E. Y., and Mogilevsky, P., J. Mater. Res. 8, 2725 (1993).CrossRefGoogle Scholar
35Sambasivan, S. and Petuskey, W. T., J. Mater. Res. 7, 1473 (1992).CrossRefGoogle Scholar
36Ramqvist, L., Hamrin, K., Johansson, G., Fahlman, A., and Nordling, C., J. Phys. Chem. Solids 30, 1835 (1969).CrossRefGoogle Scholar
37Barr, T.L, Appl. Surf. Sci. 15, 1 (1983).CrossRefGoogle Scholar