Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T13:44:46.191Z Has data issue: false hasContentIssue false

Chemical reactions of lead magnesium niobate titanate in the presence of a glass

Published online by Cambridge University Press:  31 January 2011

V. Srikanth
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
E.C. Subbarao
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

A relaxor ferroelectric of composition 0.93Pb(Mg1/3Nb2/3)O3-0.07PbTiO3 was sintered with 3 wt.% commercial sealing glass at 750 °C for 30 min to achieve ≥95% of theoretical density and a nearly pure perovskite phase. At higher glass additions (up to 20 wt.%), higher sintering temperatures (up to 800 °C), and longer sintering times (up to 4 h), the amount of perovskite (PMN type) decreases and that of pyrochlore (6PbO · MgO · 3Nb2O5 or 3PbO · 2Nb2O5) increases. On sintering at 800 °C for 4 h no perovskite phase is present in compositions with even 1% glass addition. The reaction of glass with the PMN phase was found to lead to the disappearance of the perovskite. Addition of 0.1 to 0.6 wt.% MgO to compositions containing 1 and 3 wt.% glass (and balance PMN-PT) results in essentially pure PMN perovskite phase on sintering at 700–800 °C for 30–240 min, confirming that the reaction of glass with PMN and depletion of MgO from PMN can be arrested. The sintered ceramics exhibit relaxor behavior and possess dielectric properties essentially commensurate with the phase composition.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Smolenskii, G. A., J. Phys. Soc. Jpn. Suppl. 28, 26 (1970).Google Scholar
2.Jona, F. and Shirane, G., Ferroelectric Crystals (McMillan, New York, 1962).Google Scholar
3.Cross, L. E., Jang, S. J., and Newnham, R. E., Ferroelectrics 23, 187 (1980).CrossRefGoogle Scholar
4.Nomura, S. and Uchino, K., Ferroelectrics 41, 117 (1982).CrossRefGoogle Scholar
5.Shrout, T. R. and Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987).Google Scholar
6.Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. XVII, 1245 (1982).CrossRefGoogle Scholar
7.Chen, J., Gorton, A., Chen, H. M., and Harmer, M., J. Am. Ceram. Soc. 69, C303 (1986).Google Scholar
8.Swartz, S. L., Shrout, T. R., Schulze, W. A., and Cross, L. E., J. Am. Ceram. Soc. 67, 311 (1984).CrossRefGoogle Scholar
9.Goo, E., Yamamoto, T., and Okazaki, K., J. Am. Ceram. Soc. 69, C188 (1986).CrossRefGoogle Scholar
10.Wang, H. C. and Schulze, W. A., J. Am. Ceram. Soc. 73, 825 (1990).CrossRefGoogle Scholar
11.Hilton, A. D., Randall, C. A., Barber, D. J., and Shrout, T. R. (to be published).Google Scholar
12.Shrout, T. R., Huebner, W., C.247zRandall, A., and Hilton, A. D., Ferroelectrics 93, 361 (1989).CrossRefGoogle Scholar
13.Shrout, T. R., Kumar, U., Megherhi, M., Yang, N., and Jang, S. J., Ferroelectrics 76, 479 (1987).CrossRefGoogle Scholar
14.Papet, P., Dougherty, J. P., and Shrout, T. R. (to be published).Google Scholar
15.Choudhary, K. Ramesh and Subbarao, E. C., Ferroelectrics 37, 689 (1981).CrossRefGoogle Scholar
16.Megherhi, M. H., Thesis, M. S., The Pennsylvania State University (1988).Google Scholar
17.Lejeune, M. and Boilet, J. P., Mater. Res. Bull. XX, 493 (1985).CrossRefGoogle Scholar
18.Guha, J. P., Hong, D. J., and Anderson, H. U., J. Am. Ceram. Soc. 71, C152 (1988).Google Scholar
19.Kang, D. H. and Yoon, K. H., Ferroelectrics 87, 255 (1988).CrossRefGoogle Scholar
20.Megherhi, M. H., Dougherty, J. P., Dayton, G. O., and Newnham, R. E. (to be published).Google Scholar
21.Yan, M. F., Ling, H. C., and Rhodes, W. W., J. Mater. Res. 4, 930 (1989).CrossRefGoogle Scholar
22.Shrout, T. R. and Swartz, S. L., Mater. Res. Bull. XVIII, 663 (1983).CrossRefGoogle Scholar
23.Chen, J. and Harmer, M. P., J. Am. Ceram. Soc. 73, 68 (1990).CrossRefGoogle Scholar
24.Guha, J. P. and Anderson, H. U., in Powder Ceramic Science, edited by Messing, G., Fuller, E. R., Jr., and Housner, H., I, 1123 (1988).Google Scholar
25.Lejeune, M. and Boilet, J. P., 254zCeram. Int. 8, 99 (1982).CrossRefGoogle Scholar
26.Lejeune, M. and Boilet, J. P., Am. Ceram. Soc. Bull. 64, 679 (1985).Google Scholar