Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:35:03.975Z Has data issue: false hasContentIssue false

Characterization of sol-gel Pb(Zr0.53Ti0.47)O3 films in the thickness range 0.25–10 μm

Published online by Cambridge University Press:  31 January 2011

Rajnish Kurchania
Affiliation:
Department of Materials, University of Leeds, Leeds LS2 9JT, United Kingdom
Steven J. Milne
Affiliation:
Department of Materials, University of Leeds, Leeds LS2 9JT, United Kingdom
Get access

Abstract

Films of nominal composition Pb(Zr0.53Ti0.47)O3 (PZT) in the thickness range 0.25−10 μm have been fabricated on Pt/Ti/SiO2/Si substrates using a propanediol-based sol-gel route. The spun-on coatings were prefired at 350 and 600 °C between successive depositions before firing the multilayer stack at 700 °C for 15 min. The variations in crystallite orientation, microstructure, and dielectric and ferroelectric properties were determined as a function of film thickness. For a constant applied field of 150 kV cm−1, remanent polarization decreased progressively from 35 to 17 μC cm−2 as film thickness decreased in the range 10–0.25 μm; values of coercive field were reasonably constant, 18–19 kV cm−1, for films between 2 and 10 μm, but increased sharply below 2 μm, reaching 46 kV cm−1 for a 0.25 μm film. Relative permittivity (εr) decreased from approximately 1400 to approximately 940 with most of the reduction occurring in films less than 2 μm in thickness. These trends are discussed in terms of the presumed influence of interfacial phenomena on the measured electrical response.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
2.Landolt–Börnstein New Series: Ferroelectric and Antiferroelectric (Landolt–Börnstein, Berlin, 1975), Vol. 9, p. 119.Google Scholar
3.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989).Google Scholar
4.Chen, H.D., Udaykumar, K. R., Gaskey, C.J., and Cross, L. E., J. Am. Ceram. Soc. 79, 2189 (1996).CrossRefGoogle Scholar
5.Budd, K.D., Dey, S. K., and Payne, D. A., Brit. Ceram. Proc. 36, 107 (1985).Google Scholar
6.Pyke, S. H., Ph.D. Thesis, University of Leeds (1990).Google Scholar
7.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2717 (1988).CrossRefGoogle Scholar
8.Haertling, G. H., Int. Ferroelectrics 3, 207 (1993).CrossRefGoogle Scholar
9.Haertling, G. H., Am. Ceram. Soc. Bull. 73 (8), 68 (1994).Google Scholar
10.Phillips, N. J. and Milne, S. J., J. Mater. Chem. 1, 893 (1991).CrossRefGoogle Scholar
11.Philips, N. J., Calzada, M. L., and Milne, S. J., J. Non-Cryst. Solids 147 & 148, 285 (1990).Google Scholar
12.Calzada, M. L. and Milne, S. J., J. Mater. Sci. Lett. 12, 1221 (1993).CrossRefGoogle Scholar
13.Tu, Y. L. and Milne, S. J., J. Mater. Sci. 30, 2507 (1995).CrossRefGoogle Scholar
14.Tu, Y. L., Calzada, M. L., Philips, N. J., and Milne, S. J., J. Am. Ceram. Soc. 79, 441 (1996).Google Scholar
15.Tu, Y. L. and Milne, S. J., J. Mater. Res. 11, 2556 (1996).CrossRefGoogle Scholar
16.Chen, S. Y. and Chen, I. W., J. Am. Ceram. Soc. 77, 2332 (1994).CrossRefGoogle Scholar
17.Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).Google Scholar
18.Tani, T., Xu, Z., and Payne, D. A., in Ferroelectric Thin Films III, edited by Myers, E. R., Tuttle, B. A., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 269.Google Scholar
19.Kim, C. J., Yoon, D. S., Lee, J. S., Choi, C. J., and No, K., J. Mater. Res. 12, 1043 (1997).Google Scholar
20. Powder Diffraction File, Card No. 17–64, Joint Committee on Powder Diffraction Standards, Swarthmore, PA (1979).Google Scholar
21.Reaney, I. M., Brooks, K., Klissurska, R., Pawlaczyk, C., and Setter, N., J. Am. Ceram. Soc. 77, 1209 (1994).CrossRefGoogle Scholar
22.Sakashita, Y., Segawa, H., Tominaga, K., and Okada, M., J. Appl. Phys. 73, 7857 (1993).CrossRefGoogle Scholar
23.Cillessen, J. F.M, Prins, M. W. J., and Wolf, R. M., J. Appl. Phys. 81, 2777 (1997).Google Scholar
24.Larsen, P. K., Dormans, G. J. M., Taylor, D. J., and van Veldhoven, P. J., J. Appl. Phys. 76, 2405 (1994).CrossRefGoogle Scholar
25.Lakeman, C. D. E. and Payne, D. A., Ferroelectrics 152, 145 (1994).Google Scholar
26.Amanuma, K., Mori, T., Hase, T., Sakuma, T., Ocui, A., and Miyasaka, Y., Jpn. J. Appl. Phys. 32, 4150 (1993).CrossRefGoogle Scholar
27.Newnham, R. E., Udaykumar, K. R., and Trolier-McKinstry, S., in Chemical Processing of Advanced Ceramics, edited by Hench, L. L. and Vest, J.K. (John Wiley, New York, 1992).Google Scholar
28.Chiang, S. S., Nishioka, M., Fulrath, R. M., and Pask, J. A., Ceram. Bull. 60, 484 (1981).Google Scholar