Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T05:28:07.799Z Has data issue: false hasContentIssue false

Characterization of single layer PZT (53/47) films prepared from an air-stable sol-gel route

Published online by Cambridge University Press:  03 March 2011

Y.L. Tu
Affiliation:
Division of Ceramics, School of Materials, The University of Leeds, Leeds LS2 9JT, United Kingdom
S.J. Milne
Affiliation:
Division of Ceramics, School of Materials, The University of Leeds, Leeds LS2 9JT, United Kingdom
Get access

Abstract

Single layer Pb(Zr0.53Ti0.47)O3 films up to 0.7 μm thick have been prepared from air-stable titanium and zirconium precursors using a diol-based sol-gel route. Information on film crystallization, surface microstructure, and electrical properties under different firing temperatures and three different heating rates including rapid thermal annealing are presented. Films exhibited (111) preferred orientation, the extent of which reduced with increasing firing temperature or heating rate. It is possible that a PbPtx interfacial reaction product was formed during the prefiring step at 350 °C and this, together with the influence of the 111 bottom platinum electrode, contributed to (111) orientation in the PZT films. Surface microstructure was also influenced by firing temperature and heating rate as well as by film thickness. The 0.4 μm thick films used for electrical measurement had a grain size of ⋚0.1 μm, whereas 0.7 μm thick films made from concentrated sols exhibited “rosette” microstructures with grain sizes up to 0.5 μm. Among the three firing schedules studied, directly inserting the gel coatings in a furnace preset at 700 °C produced films with the most favorable electrical properties. A 0.4 μm thick film gave rise to a remanent polarization, Pr, of 33 μC cm−2 coercive field, Ec, of 46 kV cm−1; relative permittivity, ∊r, of 1100; and dissipation factor, D, of 0.05. For a 0.7 μm single layer film, the respective values were 21 μC cm−2, 36 kV cm−1, 1300, and 0.05.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fukushima, J., Koaira, K., and Matsushita, T., J. Mater. Sci. 19, 595598 (1984).Google Scholar
2Budd, K. B., Dey, S. K., and Payne, D. A., in Electrical Ceramics, edited by Steele, B. C. H. (Brit. Ceram. Proc. 36, Stoke-on-Trent, Staffs, U. K., 1985), p. 107.Google Scholar
3Chen, K. C., Janah, A., and Mackenzie, J. D., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, p. 731.Google Scholar
4Tohge, N., Takahashi, S., and Minami, T., J. Am. Ceram. Soc. 74, 6771 (1991).CrossRefGoogle Scholar
5Takahashi, Y., Matsuoka, Y., Yamaguchi, K., Matsuki, M., and Kobayashi, K., J. Mater. Sci. 25, 39603964 (1990).CrossRefGoogle Scholar
6Pyke, S. H., Ph. D. thesis, University of Leeds (1990).Google Scholar
7Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 27132723 (1988).Google Scholar
8Kwok, C. K., Desu, S. B., and Vijay, D. P., Ferroelectric Lett. 16, 143156 (1993).CrossRefGoogle Scholar
9Philips, N. J. and Milne, S. J., J. Mater. Chem. Lett. 1, 893894 (1991).CrossRefGoogle Scholar
10Philips, N. J., Calzada, M. L., and Milne, S. J., J. Non-Cryst. Solids 147 & 148, 285290 (1992).CrossRefGoogle Scholar
11Calzada, M. L. and Milne, S. J., J. Mater. Sci. Lett. 12, 12211223 (1993).CrossRefGoogle Scholar
12Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 25402553 (1994).CrossRefGoogle Scholar
13Carim, A. H., Tuttle, B. A., Doughty, D. H., and Martinez, S. L., J. Am. Ceram. Soc. 74, 14551458 (1991).CrossRefGoogle Scholar
14Myers, S. A. and Chapin, L. N., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 231237 (1990).Google Scholar
15Peng, C. H. and Desu, S. B., J. Am. Ceram. Soc. 77, 14861492 (1994).CrossRefGoogle Scholar
16Tuttle, B. A., Schwartz, R. W., Doughty, D. H., Voigt, J. A., and Carim, A. H., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 159.Google Scholar
17Tani, T. and Payne, D. A., J. Am. Ceram. Soc. 77, 12421248 (1994).CrossRefGoogle Scholar
18Tu, Y. L. and Milne, S. J., unpublished work.Google Scholar
19Chen, S. Y. and Chen, I. W., J. Am. Ceram. Soc. 77, 23372344 (1994).CrossRefGoogle Scholar
20Kwok, C. K. and Desu, S. B., J. Mater. Res. 8, 339344 (1993).CrossRefGoogle Scholar
21Lee, J. S., Kim, C. J., Yoon, P. S., Choi, C. G., Kim, J. M., and No, K., Jpn. J. Appl. Phys. 33, Part 1, No. 1A, 260265 (1994).CrossRefGoogle Scholar
22Tuttle, B. A., Headley, T. J., Bunker, B. C., Schwartz, R. W., Zender, T. J., Hernandez, C. L., Goodnow, D. C., Tissot, R. J., Michael, J., and Carim, A. H., J. Mater. Res. 7, 18761881 (1992).CrossRefGoogle Scholar
23Hirano, S. H., Yogo, T., Kikuta, K., Araki, Y., Saitoh, M., and Ogasahara, S., J. Am. Ceram. Soc. 75, 27852789 (1992).Google Scholar
24Tani, T., Xu, Z., and Payne, D. A., in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 269.Google Scholar
25Schwartz, R. W., Bunker, B. C., Bimo, D. B., Assink, R. A., Tuttle, B. A., Tallant, D. R., and Weinstock, I. A., in Proc. 3rd Int. Symp. on Integrated Ferroelectrics, edited by Paz de Araujo, C. A. (Colorado Springs, CO, 1991), p. 535.Google Scholar
26Lakeman, C. D. E. and Payne, D. A., J. Am. Ceram. Soc. 75, 30913096 (1992).CrossRefGoogle Scholar
27Hsueh, C. C. and Mecartney, M. L., J. Mater. Res. 6, 22082217 (1991).CrossRefGoogle Scholar
28Selvaraj, U., Brooks, K., Prasadarao, A. V., Komarneni, S., Roy, R., and Cross, L. E., J. Am. Ceram. Soc. 76, 14411444 (1993).CrossRefGoogle Scholar