Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T02:51:14.892Z Has data issue: false hasContentIssue false

Characterization of radiation damage in ceramics: Old challenge new issues?

Published online by Cambridge University Press:  13 April 2015

David Simeone*
Affiliation:
CEA/DEN/DANS/DMN/SRMA/LA2M-LRC CARMEN, CEN Saclay, F91191 Gif sur Yvette, France; and SPMS/ECP UMR 8580/LRC CARMEN, Ecole Centrale Paris, F91292 Chatenay Malabry, France
Jean Marc Costantini
Affiliation:
CEA/DEN/DANS/DMN/SRMA/LA2M, CEN Saclay, F91191 Gif sur Yvette, France
Laurence Luneville
Affiliation:
CEA/DEN/DANS/DM2S/SERMA/LLPR-LRC CARMEN, CEN Saclay, F91191 Gif sur Yvette, France; and SPMS/ECP UMR 8580/LRC CARMEN, Ecole Centrale Paris, F91292 Chatenay Malabry, France
Lionel Desgranges
Affiliation:
CEA/DEN/CAD/DEC/SESC/LLC, CEN Cadarache, F13108 Saint-Paul-Lez Durance, France
Patrick Trocellier
Affiliation:
CEA/DEN, Service de Recheches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Philippe Garcia
Affiliation:
CEA/DEN/CAD/DEC/SPUA/LMP, CEN Cadarache, F13108 Saint-Paul-Lez Durance, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This work is an overview of the physical approaches required for characterizing and understanding the long-term evolution of ceramics under irradiation. Because this subject is complex and has many ramifications, we have chosen to address the problem by looking at the behavior of a number of key ceramics. In the first part of this work, we present the physical mechanisms responsible for the production of primary defects, pointing out the main differences between metals, semiconductors, and insulators. In part two, we attempt to show how devoted experimental techniques can combine with transmission electron microscopy and x-ray techniques to provide a clearer picture of the long-term evolution of the microstructure of ceramics under irradiation. The last part of this work is devoted to discussing different approaches to explain and describe the long-term behavior of irradiated ceramics.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: William J. Weber

References

REFERENCES

Hopkins, G.R. and Price, R.: Fusion reactor design with ceramics. Nucl. Eng. Des./Fusion 2, 111 (1984).CrossRefGoogle Scholar
Ducastelle, F.: Order and Phase Stability in Alloys (Amsterdam, Netherlands, 1991).Google Scholar
Martin, G. and Bellon, P.: Driven alloys. Solid State Phys. 5354, 1 (1997).Google Scholar
Gusev, A., Rampel, A., and Magerl, A.: Disorder and Order in Strongly Non Stoechiometric Compounds (Springer Verlag, Berlin, Germany, 2001).CrossRefGoogle Scholar
Freysoldt, C., Grabowski, B., Hickel, T., and Neugebauer, J.: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253 (2014).CrossRefGoogle Scholar
Bourgoin, J.C. and Lannoo, M.: Point Defects in Semiconductors (Springer Verlag, Berlin, 1983).CrossRefGoogle Scholar
Whapham, A. and Sheldon, B.: Radiation damage in uranium dioxide. Philos. Mag. 12, 1179 (1965).CrossRefGoogle Scholar
Stathopoulos, A. and Pells, G.: Damage in the cation sublattice of α-Al2O3 irradiated in an HVEM. Philos. Mag. A 47, 381 (1983).CrossRefGoogle Scholar
Yasunaga, K., Yasuda, K., Matsumura, S., and Sonoda, T.: Nucleation and growth of defect clusters in CeO2 irradiated with electrons. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 114 (2006).CrossRefGoogle Scholar
Willis, B.T.M.: The defect structure of hyper-stoichiometric uranium dioxide. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 34, 88 (1978).CrossRefGoogle Scholar
Brydon, P., Schmiedt, J., and Timm, C.: Microscopically derived Ginzburg-Landau theory for magnetic order in the iron pnictides. Phys. Rev. B 84, 214510 (2011).CrossRefGoogle Scholar
Hobbs, L., Clinar, F., Zinkle, S., and Ewing, R.: Radiation effects in ceramics. J. Nucl. Mater. 216, 291 (1994).CrossRefGoogle Scholar
Zinkle, S. and Hoddgon, E.: Radiation-induced changes in the physical properties of ceramic materials. J. Nucl. Mater. 191, 58 (1992).CrossRefGoogle Scholar
Zinkle, S. and Kinoshita, C.: Defect production in ceramics. J. Nucl. Mater. 251, 200 (1997).CrossRefGoogle Scholar
Trocellier, P., Gosset, D., and Simeone, D.: 3He thermal diffusion coefficient measurement in crystalline ceramics by μnra depth profiling. Nucl. Instrum. Methods Phys. Res., Sect. B 210, 507 (2002).CrossRefGoogle Scholar
Peuget, S., Delaye, JM., and Jegou, C.: Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation. J. Nucl. Mater. 444, 76 (2014).CrossRefGoogle Scholar
Sorieul, S., Allard, T., Morin, G., Boizot, B., and Calas, G.: Native and artificial radiation-induced defects in montmorillonite. An EPR study. Phys. Chem. Miner. 1, 32 (2005).Google Scholar
Bergaya, F. and Lagaly, G.: Developments in Clay science, Handbook of Clay Science, Vol. 5 (Elsevier, Oxford, UK, 2013).Google Scholar
Allard, T. and Calas, G.: Radiation effects on clay mineral properties. Appl. Clay Sci. 43, 143 (2009).CrossRefGoogle Scholar
Bonal, J. and Gosmain, L.: See for a Review on the Evlution of Stransport and Structural Properties of Graphite Irradiated in Nuclear Plants, Internal Report; CEA, 2004.Google Scholar
Billington, D. and Crawford, J.: Radiation Damage in Solids, Vol. 5, 2nd ed. (Princeton University Press, NY, 1961); p. 396.Google Scholar
King, W., Merkle, K., and Meshii, M.: Determination of the threshold-energy surface for copper using in-situ electrical-resistivity measurements in the high-voltage electron microscope. Phys. Rev. B 23, 6319 (1981).CrossRefGoogle Scholar
Vajda, P.: Anisotropy of electron radiation damage in metal crystals. Rev. Mod. Phys. 49, 481 (1977).CrossRefGoogle Scholar
Gosset, D., Morillo, J., Allison, C., and De Novion, C.H.: Electron irradiation damage in stoichiometric and substoichiometric tantalum carbides TaCx part 1: Thershold displacement energies. Radiat. Eff. Defects Solids 118, 207 (1991).CrossRefGoogle Scholar
Pells, G.P. and Shikama, T.: Radiation damage in pure and helium-doped α-Al2O3 in the HVEM quantitative aspects of void and aluminium precipitate formation. Philos. Mag. A 48, 779 (1983).CrossRefGoogle Scholar
Williford, R., Davanathan, R., and Weber, W.: Computer simulation of displacement energies for several ceramic materials. Nucl. Instrum. Methods Phys. Res., Sect. B 141, 94 (1998).CrossRefGoogle Scholar
Soullard, J.: High voltage electron microscope observations of UO2 . J. Nucl. Mater. 135, 190 (1985).CrossRefGoogle Scholar
Meis, C. and Chartier, A.: Calculation of the threshold displacement energies in UO2 using ionic potentials. J. Nucl. Mater. 341, 25 (2005).CrossRefGoogle Scholar
Buck, E.C.: Effects of electron irradiation of rutile. Radiat. Eff. Defects Solids 133, 141 (1995).CrossRefGoogle Scholar
Smith, K.L., Collela, M., Cooper, R., and Vance, E.R.: Measured displacement energies of oxygen ions in titanates and zirconates. J. Nucl. Mater. 321, 19 (2003).CrossRefGoogle Scholar
Robinson, M., Marks, N.A., Whittle, K.R., and Lumpkin, G.R.: Systematic calculation of threshold displacement energies: Case study in rutile. Phys. Rev. B 85, 104105 (2012).CrossRefGoogle Scholar
Thomas, B.S., Marks, N.A., Corrales, L.R.L., and Devanathan, R.: Threshold displacement energies in rutile TiO2: A molecular dynamics simulation study. Nucl. Instrum. Methods Phys. Res., Sect. B 239, 191 (2005).CrossRefGoogle Scholar
Pells, G.: Radiation effects and damage mechanisms in ceramic insulators and window materials. J. Nucl. Mater. 155, 67 (1988).CrossRefGoogle Scholar
Park, B., Weber, W., and Corrales, L.: Molecular dynamics study of the threshold displacement energy in MgO. Nucl. Instrum. Methods Phys. Res., Sect. B 166, 357 (2000).CrossRefGoogle Scholar
Kittiratanawasin, L., Smith, R., Uberuaga, P., and Sickafus, K.: Displacement threshold and Frenkel pair formation energy in ionic systems. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 2901 (2010).CrossRefGoogle Scholar
Pigg, J., Garrison, A., and Austermann, S.: Radiation damage in beryllium oxide single crystals. J. Nucl. Mater. 49, 67 (1973).CrossRefGoogle Scholar
Kerbiriou, X.: Silicon displacement threshold energy determined by electron paramagnetic resonance and positron annihilation spectroscopy in cubic and hexagonal polytypes of silicon carbide. J. Nucl. Mater. 362, 202 (2007).CrossRefGoogle Scholar
Steeds, J.W.: Transmission electron microscope radiation damage of 4H and 6H SiC. Diamond Relat. Mater. 11, 1923 (2002).CrossRefGoogle Scholar
Jiang, W.: Response of nanocrystalline 3C silicon carbide to heavy-ion irradiation. Phys. Rev. B 80, 161301 (2009).CrossRefGoogle Scholar
Devanathan, R. and Weber, W.: Displacement energy surface in 3C and 6H SiC. J. Nucl. Mater. 278, 258 (2000).CrossRefGoogle Scholar
Honsvet, I.A., Smallman, R.E., and Marquis, P.M.: A determination of the atomic displacement energy in cubic silicon carbide. Philos. Mag. A 41, 201 (1980).CrossRefGoogle Scholar
Lefèvre, J., Costantini, J.M., Esnouf, S., and Petite, G.: Silicon threshold displacement energy determined by photoluminescence in electron-irradiated cubic silicon carbide. J. Appl. Phys. 105, 023520 (2009).CrossRefGoogle Scholar
Stoto, T., Zuppiroli, L., and Pelissier, J.: Absence of defect clusters in electron irradiated boron carbide. Radiat. Eff. 90, 161 (1985).CrossRefGoogle Scholar
Summers, G.P., White, G.S., Lee, K.H., and Crawford, J.H. Jr: Radiation damage in MgAl2O4 . Phys. Rev. B 21, 2578 (1980).CrossRefGoogle Scholar
Xiao, H.Y., Zhang, Y., and Weber, W.J.: Ab initio molecular dynamics simulations of low-energy recoil events in ThO2, CeO2, and ZrO2. Phys. Rev. B 86, 054109 (2012).CrossRefGoogle Scholar
Yasunaga, K., Yasuda, K., Matsumura, S., and Sonoda, T.: Electron energy-dependent formation of dislocation loops in CeO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2877 (2008).CrossRefGoogle Scholar
Costantini, J., Beuneu, F., Morrison Smith, S., Devanathan, R., and Weber, W.: Paramagnetic defects in electron-irradiated yttria-stabilized zirconia: Effect of yttria content. J. Appl. Phys. 110, 123506 (2011).CrossRefGoogle Scholar
Gosset, D., Dollé, M., Baldinozzi, G., Simeone, D., and Thomé, L.: Structural evolution of zirconium carbide under ion irradiation. J. Nucl. Mater. 373, 123 (2008).CrossRefGoogle Scholar
Crocombette, J. and Galheb, D.: Modeling the structure of zircon (ZrSiO4): Empirical potentials, ab initio electronic structure. J. Nucl. Mater. 257, 282 (1998).CrossRefGoogle Scholar
Moreira, P., Devanathan, R., Yu, J., and Weber, W.: Molecular-dynamics simulation of threshold displacement energies in zircon. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3431 (2009).CrossRefGoogle Scholar
Xiao, H.Y., Gao, F., and Weber, W.J.: Threshold displacement energies and defect formation energies in Y2Ti2O7 . J. Phys.: Condens. Matter 22, 415801 (2010).Google ScholarPubMed
Kotomin, E. and Popov, A.: Radiation-induced point defects in simple oxides. Nucl. Instrum. Methods Phys. Res., Sect. B 141(4), 1 (1998).CrossRefGoogle Scholar
Lucas, G. and Pizzagalli, L.: Comparison of threshold displacement energies in β-SiC determined by classical potentials and ab initio calculations. Nucl. Instrum. Methods Phys. Res., Sect. B 229, 359 (2005).CrossRefGoogle Scholar
Rappe, A. and Goddard, W.: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358 (1991).CrossRefGoogle Scholar
Streitz, F. and Mintmire, J.: Electrostatic potentials for metal-oxide surfaces and interfaces. Phys. Rev. B 50, 11996 (1994).CrossRefGoogle ScholarPubMed
Sickafus, K.: Radiation tolerance of complex oxides. Science 289, 748 (2000).CrossRefGoogle ScholarPubMed
Chartier, A., Catillon, G., and Crocombette, J.: Key role of the cation interstitial structure in the radiation resistance of pyrochlores. Phys. Rev. Lett. 102, 155503 (2009).CrossRefGoogle ScholarPubMed
Stoller, R. and Greenwood, L.: Subcascade formation in displacement cascade simulations: Implications for fusion reactor materials. J. Nucl. Mater. 271272, 57 (1999).CrossRefGoogle Scholar
Martin, G., Garcia, P., Van Brutzel, L., Dorado, B., and Maillard, S.: Effect of the cascade energy on defect production in uranium dioxide. Nucl. Instrum. Methods Phys. Res., Sect. B 269, 1727 (2011).CrossRefGoogle Scholar
Simeone, D., Luneville, L., and Serruys, Y.: Cascade fragmentation under ion beam irradiation: A fractal approach. Phys. Rev. E 82(1), 011122 (2010).CrossRefGoogle ScholarPubMed
Bacorisen, D.: Atomistic simulations of radiation-induced defect formation in spinels: MgAl2O4, MgGa2O4, and MgIn2O4 . Phys. Rev. B 74, 214105 (2006).CrossRefGoogle Scholar
Tersoff, J.: Carbon defects and defect reactions in silicon. Phys. Rev. Lett. 64, 1757 (1990).CrossRefGoogle ScholarPubMed
Gao, F. and Weber, W.: Atomic-scale simulation of 50 keV Si displacement cascades in β-SiC. Phys. Rev. B 63, 054101 (2000).CrossRefGoogle Scholar
Gao, F., Weber, W., and Devanathan, R.: Atomic-scale simulation of displacement cascades and amorphization in β-SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 180, 176 (2001).CrossRefGoogle Scholar
Gao, F., Xiao, H., Zu, X., Posselt, M., and Weber, W.: Defect-enhanced charge transfer by ion-solid interactions in SiC using large-scale ab initio molecular dynamics simulations. Phys. Rev. Lett. 103, 27405 (2009).CrossRefGoogle ScholarPubMed
Chen, Y.: Radiation Effect and Tritium Technology for Fusion Reactor, Vol. 2 (Gattlinburg, 1975).Google Scholar
Schnohr, C., Wendler, E., Gartner, K., Welsch, W., and Ellmer, K.: Ion-beam induced effects at 15K in α-Al2O3 of different orientations. J. Appl. Phys. 99, 123511 (2006).CrossRefGoogle Scholar
Chu, W., Mayer, J., and Nicolet, M.: Backscattering Spectroscopy (Academic Press, New York, NY, 1978).Google Scholar
Uberuaga, B.: Dynamical simulations of radiation damage and defect mobility in MgO. Phys. Rev. B 71, 104102 (2005).CrossRefGoogle Scholar
Gao, F., Xiao, H., and Weber, W.: Ab initio molecular dynamics simulations of low energy recoil events in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 269, 1693 (2011).CrossRefGoogle Scholar
Itoh, N. and Stoneham, M.: Materials Modification by Electronic Excitation in Insulators (Cambridge University Press, Cambridge, UK, 2000).CrossRefGoogle Scholar
Devine, R.: Radiation induced structural changes in amorphous SiO2: 1. Point defects. Jpn. J. Appl. Phys. 31, 4421 (1992).Google Scholar
Itoh, N.: Defect Processes Induced by Electronic Excitation in Insulators, Vol. 5 (World Scientific, Singapore, 1998).Google Scholar
Clinard, F. and Hobbs, L.. Radiation Effects in Non-Metals In Modern Problems in Condensed Matter Physics, Vol. 13, Johnson, R.A. and Orlov, A.N. eds.; (Amsterdam, Netherlands, 1986); pp. 387471.Google Scholar
Stampfli, P. and Bennemann, K.: Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma. Phys. Rev. B 42, 7163 (1990).CrossRefGoogle Scholar
Tanimura, K., Tanaka, T., and Itho, N.: Creation of quasistable lattice defects by electronic excitation in SiO2 . Phys. Rev. Lett. 51, 423 (1983).CrossRefGoogle Scholar
Knotek, M. and Feibelman, P.: Ion desorption by core-hole auger decay. Phys. Rev. Lett. 40, 964 (1978).CrossRefGoogle Scholar
Itho, N. andTanimura, K.: Formation of interstitial-vacancy pairs by electronic excitation in pure ionic crystals. J. Phys. Chem. Solids 51, 717 (1990).CrossRefGoogle Scholar
Williams, R. and Song, K.: The self-trapped exciton. J. Phys. Chem. Solids 51, 679 (1990).CrossRefGoogle Scholar
Kayamuna, Y.: Defects Processes Induced by Electronic Excitation in Insulators (World Scientific, Singapor, 1989).Google Scholar
Tsai, T. and Griscom, D.: Experimental evidence for excitonic mechanism of defect generation in high-purity silica. Phys. Rev. Lett. 67, 2517 (1991).CrossRefGoogle ScholarPubMed
Hosono, H., Kawasoe, H., and Matsunami, N.: Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation. Phys. Rev. Lett. 80, 317 (1998).CrossRefGoogle Scholar
Roma, G., Limoge, Y., and Baroni, S.: Oxygen self-diffusion in α-quartz. Phys. Rev. Lett. 86, 4564 (2001).CrossRefGoogle ScholarPubMed
Xiong, G., Joly, A., and Beck, K., and hess, W.: Laser‐induced oxygen vacancy formation and diffusion on TiO2(110) surfaces probed by photoemission electron microscopy. Phys. Status Solidi C 13(10), 3598 (2006).CrossRefGoogle Scholar
Stievenard, D., Boddaert, X., Bourgoin, J., and Bardeleden, H.: Behavior of electron-irradiation-induced defects in GaAs. Phys. Rev. B 41, 5271 (1990).CrossRefGoogle Scholar
Seebauer, E. and Kratzer, M.: Charged point defects in semiconductors. Mater. Sci. Eng., R 55, 57 (2006).CrossRefGoogle Scholar
Weber, W., Zhang, Y., and Wang, L.: Review of dynamic recovery effects on ion irradiation damage in ionic-covalent materials. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 1 (2012).CrossRefGoogle Scholar
Krefft, G.: Ionization‐stimulated annealing effects on displacement damage in magnesium oxide. J. Vac. Sci. Technol. 14, 533 (1977).CrossRefGoogle Scholar
Clement, S. and Hodgson, E.: Radiation-enhanced impurity aggregation in MgO. Phys. Rev. B 36, 3359 (1987).CrossRefGoogle ScholarPubMed
Devanathan, R., Sickafus, K., Weber, W., and Nastasi, M.: Effects of ionizing radiation in ceramics. J. Nucl. Mater. 253, 113 (1998).CrossRefGoogle Scholar
Lesueur, D. and Dunlop, A.: Damage creation via electronic excitations in metallic targets part II: A theoretical model. Radiat. Eff. Defects Solids 126, 163 (1993).CrossRefGoogle Scholar
Bonfiglioli, G., Ferro, A., and Mojoni, A.: Electron microscope investigation on the nature of tracks of fission products in mica. J. Appl. Phys. 32, 2499 (1961).CrossRefGoogle Scholar
Watanabe, Y., Takemoto, Y., Kubozoe, T., and Mukoyama, T.: Monte-Carlo calculations of the energy distribution of exoelectrons. Phys. Status Solidi A 61, 221 (1980).CrossRefGoogle Scholar
Canright, G.: Time-dependent screening in the electron gas. Phys. Rev. B 38, 1647 (1988).CrossRefGoogle ScholarPubMed
Szenes, G.: Ion-velocity-dependent track formation in yttrium iron garnet: A thermal-spike analysis. Phys. Rev. B 52, 6154 (1995).CrossRefGoogle ScholarPubMed
Toulemonde, M., Dufour, C., Meftah, A., and Paumier, E.: Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 166, 903 (2000).CrossRefGoogle Scholar
Klaumunzer, S.: Ion tracks in quartz and vitreous silica. Nucl. Instrum. Methods Phys. Res., Sect. B 225, 136 (2004).CrossRefGoogle Scholar
Trautmann, C., Toulemonde, M., Schwartz, K., Costantini, J.M., and Müller, A.: Damage structure in the ionic crystal LiF irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 164, 365 (2000).CrossRefGoogle Scholar
Khalfaoui, N.: Characterization of swift heavy ion tracks in CaF2 by scanning force and transmission electron microscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 819 (2005).CrossRefGoogle Scholar
Kluth, P.: Fine structure in swift heavy ion tracks in amorphous SiO2 . Phys. Rev. Lett. 101, 175503 (2008).CrossRefGoogle ScholarPubMed
Backman, M.: Atomistic simulations of MeV ion irradiation of silica. Nucl. Instrum. Methods Phys. Res., Sect. B 303, 129 (2013).CrossRefGoogle Scholar
Henderson, B. and Wertz, J.E.: Defects in the Alkaline Earth Oxides (Taylor, London).Google Scholar
Shen, T., Feng, S., Tang, M., Valdez, J., Wang, Y., and Sickafus, K.: Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90, 263115 (2007).CrossRefGoogle Scholar
Ibarra, A., Mariani, D., and Jimenez de Castro, M.: Thermoluminescent processes of MgAl2O4 irradiated at room temperature. Phys. Rev. B 44, 12158 (1991).CrossRefGoogle ScholarPubMed
Simeone, D., Baldinozzi, G., Gosset, D., Mazerolles, L., and LeCaër, S.: Impact of radiation defects on the structural stability of pure zirconia. Phys. Rev. B 70, 134116 (2004).CrossRefGoogle Scholar
Simeone, D., Baldinozzi, G., Gosset, D., LeCaër, S., and Mazerolles, L.: Nano structuration of zirconia under irradiation: A way to enhance the mechanical stability of zirconia layer. Rev. Adv. Mater. Sci. 10, 118 (2005).Google Scholar
Sorieul, S., Allard, T., Morin, G., Boizot, B., and Calas, G.: Native and artificial radiation-induced defects in montmorillonite. An EPR study. Phys. Chem. Miner. 32, 17 (2005).CrossRefGoogle Scholar
Zhang, Y., Bae, I-T., Sun, K., Wang, C., Ishimaru, M., Zhu, Z., Jiang, W., and Weber, W.J.: Damage profile and ion distribution of slow heavy ions in compounds. J. Appl. Phys. 105, 104901 (2005).CrossRefGoogle Scholar
Velisa, G., Thome, L., Trocellier, P., Serruys, Y., Debelle, A., Garrido, F., and Miro, S.: Monitoring by raman spectroscopy of the damage induced in the wake of energetic ions. J. Raman Spectrosc. 45(6), 481486 (2014).Google Scholar
Simeone, D., Dodane-Thiriet, C., Gosset, D., Beauvy, M., and Daniel, P.: Order–disorder phase transition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels. J. Nucl. Mater. 300, 151 (2002).CrossRefGoogle Scholar
Guimbretière, G., Desgranges, L., Canizarès, A., Carlot, G., and Caraballo, R.: Determination of in-depth damaged profile by Raman line scan in a pre-cut He2+ irradiated UO2 . Appl. Phys. Lett. 100, 215914 (2012).CrossRefGoogle Scholar
Ishimaru, M., AfanasyevCharkin, I., and Sickafus, K.: Spinel-to rocksalt structural phase transformation in MgAl2O4 . Appl. Phys. Lett. 76, 2556 (2000).CrossRefGoogle Scholar
Baldinozzi, G., Simeone, D., Gosset, D., Surble Mazerolles, S., and Thomé, L.: Why ion irradiation does not lead to the same structural changes in normal spinels ZnAl2O4, MgAl2O4 and MgCr2O4? Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2848 (2008).CrossRefGoogle Scholar
Cowley, J.: Diffraction Physics (Amsterdam, Netherlands, 1975).Google Scholar
Hirotsu, Y., Afanasyev Charkin, I., Siockafus, K., and Ishimaru, M.: Ion-beam-induced spinel-to-rocksalt structural phase transformation in MgAl2O4 . Appl. Phys. Lett. 76, 2556 (2000).Google Scholar
Nipoti, N.: Ion implantation induced swelling in 6H-SiC. Appl. Phys. Lett. 70, 3425 (1997).CrossRefGoogle Scholar
Soeda, T. and Kinoshita Zaluzec, C.: Cation disordering in magnesium aluminate spinel crystals induced by electron or ion irradiation. J. Nucl. Mater. 283, 952 (2000).CrossRefGoogle Scholar
Luneville, L.: Interdiffusion processes at irradiated Cr/Si interfaces. J. Alloys Compd. 626, 65 (2015).CrossRefGoogle Scholar
Nichols, F.: On the estimation of sink-absorption terms in reaction-rate-theory analysis of radiation damage. J. Nucl. Mater. 75, 32 (1978).CrossRefGoogle Scholar
Krexner, G., Prem, M., Beneu, F., and Vajda, P.: Nanocluster formation in electron-irradiated Li2O crystals observed by elastic diffuse neutron scattering. Phys. Rev. Lett. 91(13), 135502 (2003).CrossRefGoogle ScholarPubMed
Simeone, D., Gosset, D., Bechade, J., and Chevarier, A.: Analysis of the monoclinic–tetragonal phase transition of zirconia under irradiation. J. Nucl. Mater. 300, 27 (2002).CrossRefGoogle Scholar
Simeone, D., Baldinozzi, G., Gosset, D., and Berar, J.F.: Rietveld refinements performed on mesoporous ceria layers at grazing incidence. J. Appl. Crystallogr. 44, 1205 (2010).CrossRefGoogle Scholar
Limoge, Y. and Barbu, A.: Aging of oxides under irradiation. Defect Diffus. Forum 237, 621 (2005).CrossRefGoogle Scholar
Shikama, T. and Pells, G.P.: Radiation damage in pure and helium-doped α-Al2O3 in the HVEM qualitative aspects of void and aluminium colloid formation. Philos. Mag. A 47, 369 (1983).CrossRefGoogle Scholar
Yasuda, K., Kinoshita, C., Matsumura, S., and Ryazanov, A.I.: Radiation-induced defect clusters in fully stabilized zirconia irradiated with ions and/or electrons. J. Nucl. Mater. 319, 74 (2003).CrossRefGoogle Scholar
Ryazanov, A., Yasuda, K., Kinoshita, C., and Klaptsov, A.V.: Instability of interstitial clusters under ion and electron irradiations in ceramic materials. J. Nucl. Mater. 323, 372 (2003).CrossRefGoogle Scholar
Howitt, D.G. and Mitchell, T.E.: Electron irradiation damage in a-Al2O3 . Philos. Mag. 44, 229 (1981).CrossRefGoogle Scholar
Youngman, R.A., Hobbs, L.W., and Mitchell, T.E.: Radiation damage in oxides: Electron irradiation damage in MgO. J. Phys. 41, C6-C227 (1980).Google Scholar
Soullard, J.: Mise en evidence de boucles de dislocation imparfaites dans des echantillons de bioxyde d'uranium irradies. J. Nucl. Mater. 78, 125 (1978).CrossRefGoogle Scholar
Kinoshita, C., Hayashi, K., and Kitajima, S.: Kinetics of point defects in electron irradiated MgO. Nucl. Instrum. Methods Phys. Res., Sect. B 1, 209 (1984).CrossRefGoogle Scholar
Van-Sambeek, A.I., Averback, R.S., Flynn, C.P., Yang, M.H., and Jäger, W.: Radiation enhanced diffusion in MgO. J. Appl. Phys. 83, 7576 (1998).CrossRefGoogle Scholar
Dorado, B.: First-principles calculation and experimental study of oxygen diffusion in uranium dioxide. Phys. Rev. B 83, 035126 (2011).CrossRefGoogle Scholar
Sizmann, R.: The effect of radiation upon diffusion in metals. J. Nucl. Mater. 69, 386 (1978).CrossRefGoogle Scholar
Meldrum, A., Boatner, L., and Ewing, R.: Nanocrystalline zirconia can be amorphized by ion irradiation. Phys. Rev. Lett. 88, 025503 (2001).CrossRefGoogle ScholarPubMed
Ewing, R.: Ion beam induced amorphization of the pyrochlore structure type: A review. MRS Proc. 792, 792-R2.1 (2003).CrossRefGoogle Scholar
Belin, R., Martin, P., Valenza, P., and Scheinost, A.: Experimental insight into based americium ceramic. Inorg. Chem. 48, 5376 (2009).CrossRefGoogle Scholar
Li, M. and Johnson, W.: Instability of metastable solid solutions and the crystal to glass transition. Phys. Rev. Lett. 70, 1120 (1993).CrossRefGoogle ScholarPubMed
Sickafus, K.: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6, 227 (2007).CrossRefGoogle ScholarPubMed
Gupta, P.: Rigidity, connectivity, and glass-forming ability. J. Am. Ceram. Soc. 76, 1088 (1993).CrossRefGoogle Scholar
Hobbs, L., Sreeram, A., Jesurum, C., and Berger, B.: Structural freedom, topological disorder, and the irradiation-induced amorphization of ceramic structures. Nucl. Instrum. Methods Phys. Res., Sect. B 116, 18 (1996).CrossRefGoogle Scholar
Whittle, K.R., Rios, S., Smith, K., Zaluzec, N., and Lumpkin, G.: Temperature dependence of ion irradiation damage in the pyrochlores La2Zr2O7 and La2Hf2O7 . J. Phys.: Condens. Matter 16, 8557 (2004).Google Scholar
Xiao, H., Weber, W., Zhang, Y., Zu, X., and Li, S.: Electronic excitation induced amorphization in titanate pyrochlore : An ab initio molecular dynamics study. Sci. Rep. 5, 8265 (2015).CrossRefGoogle ScholarPubMed
Gibbon, J.: Projected range and statistic in semi conductors. Proc. IEEE 60, 1062 (1972).Google Scholar
Weber, W.: Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 166, 98 (2000).CrossRefGoogle Scholar
Zhang, Y., Varga, T., Ishimaru, M., Edmondson, P.D., Xue, H., Liu, P., Moll, S., Namavar, F., Hardiman, C., Shannon, S., and Weber, W.J.: Competing effects of electronics and nuclear energy loss on microstructural evolution ion ionic covalent materials. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 3343 (2014).CrossRefGoogle Scholar
Zheng, M., Shannon, S., Allen, T., Morgan, D., Szlufarska, I., and Jamison, L.: Experimental and ab initio study of enhanced resistance to amorphization of nanocrystalline silicon carbide under electron irradiation. J. Nucl. Mater. 445(1), 181189 (2014).Google Scholar