Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T01:18:38.606Z Has data issue: false hasContentIssue false

Characterization of Fe–Ni(C) nanocapsules synthesized by arc discharge in methane

Published online by Cambridge University Press:  31 January 2011

X. L. Dong
Affiliation:
Institute of Metal Research, Academia Sinica, Wenhua Road 72, Shenyang, 110015, People's Republic of China and Laboratory of Ultrafine Particles, Shenyang Polytechnic University, Xinghua South Street 58, Shenyang, 110023, People's Republic of China
Z. D. Zhang
Affiliation:
Institute of Metal Research, Academia Sinica, Wenhua Road 72, Shenyang, 110015, People's Republic of China and International Center for Materials Physics, Academia Sinica, 110015, Shenyang, People's Republic of China
S. R. Jin
Affiliation:
Laboratory of Ultrafine Particles, Shenyang Polytechnic University, Xinghua South Street 58, Shenyang, 110023, People's Republic of China
W. M. Sun
Affiliation:
Laboratory of Ultrafine Particles, Shenyang Polytechnic University, Xinghua South Street 58, Shenyang, 110023, People's Republic of China
X. G. Zhao
Affiliation:
Institute of Metal Research, Academia Sinica, Wenhua Road 72, Shenyang, 110015, People's Republic of China
Z. J. Li
Affiliation:
Laboratory of Ultrafine Particles, Shenyang Polytechnic University, Xinghua South Street 58, Shenyang, 110023, People's Republic of China
Y. C. Chuang
Affiliation:
Institute of Metal Research, Academia Sinica, Wenhua Road 72, Shenyang, 110015, People's Republic of China
Get access

Abstract

Ultrafine Fe–Ni(C) particles of various compositions were prepared by arc discharge synthesis in a methane atmosphere. The particles were characterized by x-ray diffraction, transmission electron microscopy, energy disperse spectroscopy, chemical analysis, x-ray photoelectron spectroscopy, Mössbauer spectroscopy, and magnetization measurement. The carbon atoms solubilizing at interstitial sites in γ–(Fe, Ni, C) solution particles have the effects of forming austenite structure and changing microstructures as well as magnetic properties. A carbon layer covers the surface of Fe–Ni(C) particles to form the nanocapsules and protect them from oxidization. The mechanism of forming Fe–Ni(C) nanocapsules in the methane atmosphere was analyzed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Siegel, R. W., Mater. Sci. Eng. A168, 189 (1993).CrossRefGoogle Scholar
2.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
3.Uyeda, R., Prog. Mater. Sci. 35, 25 (1991).CrossRefGoogle Scholar
4.Kusaka, K., Wada, N., and Tasaki, A., Jpn. J. Appl. Phys. 8, 599 (1969).CrossRefGoogle Scholar
5.Tasaki, A., Takao, M., and Tokunaga, H., Jpn. J. Appl. Phys. 13, 271 (1974).CrossRefGoogle Scholar
6.Zhou, Y.H., Harmelin, M., and Bigot, J., Mater. Sci. Eng. A124, 241 (1990).CrossRefGoogle Scholar
7.Chen, Y.H., Deng, G.C., Lu, H.X., Wang, J.H., and Li, G., Jpn. J. Appl. Phys. 35, 113 (1995).Google Scholar
8.Kajiwara, S., Ohno, S., and Honma, K., Philos. Mag. A63, 625 (1991).CrossRefGoogle Scholar
9.Cheung, C., Djuanda, F., Erb, U., and Palumbo, G., NanoStructured Mater. 5, 513 (1995).CrossRefGoogle Scholar
10.Hays, V., Marchand, R., Saindrenan, G., and Gaffet, E., NanoStructured Mater. 7, 411 (1996).CrossRefGoogle Scholar
11.Dong, X. L., Zhang, Z. D., Zhao, X. G., Chuang, Y. C., Jin, S. R., and Sun, W.M., J. Mater. Res. 14, 398 (1999).CrossRefGoogle Scholar
12.Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramony, S., Science 259, 346 (1993).CrossRefGoogle Scholar
13.Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32, L280 (1993).CrossRefGoogle Scholar
14.Saito, Y., Yoshikawa, T., Okuda, M., Ohkohchi, M., Ando, Y., Kasuya, A., and Nishina, Y., Chem. Phys. Lett. 209, 72 (1993).CrossRefGoogle Scholar
15.Saito, Y., Yoshikawa, T., Okuda, M., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., Chem. Phys. Lett. 212, 379 (1993).CrossRefGoogle Scholar
16.Hihara, T., Onodera, H., Sumiyama, K., Suzuki, K., Kasuya, A., Nishina, Y., Saito, Y., Yoshikawa, T., and Okuda, M., Jpn. J. Appl. Phys. 33, L24 (1994).CrossRefGoogle Scholar
17.Brunsman, E. M., Sutton, R., Bortz, E., Kirkpatrick, S., Midelfort, K., Williams, J., Smith, P., McHenry, M. E., Majetich, S. A., Artman, J. O., De Graef, M., and Staley, S. W., J. Appl. Phys. 75, 5882 (1994).CrossRefGoogle Scholar
18.Saito, Y., Yoshikawa, T., Okuda, M., and Fujimoto, N., J. Appl. Phys. 75, 134 (1994).CrossRefGoogle Scholar
19.Shull, C. G. and Wilkinson, M. E., Phys. Rev. 97, 304 (1955).CrossRefGoogle Scholar
20.Collins, M. F., Jones, R. V., and Lowde, R. D., J. Phys. Soc. Jpn. 17, 19 (1962).Google Scholar
21.Sun, X. C., Dong, X. L., and Zhang, Z. D., unpublished.Google Scholar
22.Dong, X. L., Zhang, Z. D., Xiao, Q. F., Zhao, X. G., Chuang, Y. C., Jin, S. R., and Sun, W. M., J. Mater. Sci. 33, 1915 (1998).CrossRefGoogle Scholar
23.Dong, X. L., Zhang, Z. D., Jin, S. R., Sun, W. M., and Chuang, Y. C., Nanostructured Mater. 10, 585 (1998).CrossRefGoogle Scholar
24.Gangopadhyay, S., Hadjipanayis, G. C., Dale, B., Sorensen, C. M., Klabunde, K. J., Papaefthymiou, V., and Kostikas, A., Phys. Rev. B 45, 9778 (1992).CrossRefGoogle Scholar
25.Uyeda, R., in Crystallography of Metal Smoke Particles (Terra Scientific Publishing Company, Tokyo, 1987), Chap. 6, p. 443.Google Scholar
26.Johnson, C.E., Ridout, M. S., and Cranshaw, T. E., Proc. Phys. Soc. 81, 1079 (1963).CrossRefGoogle Scholar