Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T08:51:50.848Z Has data issue: false hasContentIssue false

Characterization of diamond films by Raman spectroscopy

Published online by Cambridge University Press:  31 January 2011

Diane S. Knight
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
William B. White
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

As the technology for diamond film preparation by plasma-assisted CVD and related procedures has advanced, Raman spectroscopy has emerged as one of the principal characterization tools for diamond materials. Cubic diamond has a single Raman-active first order phonon mode at the center of the Brillouin zone. The presence of sharp Raman lines allows cubic diamond to be recognized against a background of graphitic carbon and also to characterize the graphitic carbon. Small shifts in the band wavenumber have been related to the stress state of deposited films. The effect is most noticeable in diamond films deposited on hard substrates such as alumina or carbides. The Raman line width varies with mode of preparation of the diamond and has been related to degree of structural order. The Raman spectrum of hexagonal diamond (lonsdaleite) is distinct from that of the cubic diamond and allows it to be recognized.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Derjaguin, B. V. and Fedoseev, D. V., Growth of Diamond and Graphite from the Gas Phase (Nauka, Moscow, 1977), in Russian.Google Scholar
2Fedoseev, D. V., Varnin, V. P., and Derjaguin, B. V., Russian Chem. Rev. 53, 435 (1984).CrossRefGoogle Scholar
3Badzian, Andrzej R. and DeVries, R. C., Mat. Res. Bull. 23, 385 (1988).CrossRefGoogle Scholar
4Frenklach, M. and Spear, K. E., J. Mat. Res. 3, 133 (1988).CrossRefGoogle Scholar
5Piano, L. S. and Adar, F., Proc. SPIE 822 (1987).Google Scholar
6Matsumoto, S., Archiwum Naukio Materialach 7, 179 (1986).Google Scholar
7Solin, S. A. and Ramdas, A. K., Phys. Rev. B 1, 1687 (1970).CrossRefGoogle Scholar
8Washington, M. A. and Cummins, H.Z., Phys. Rev. B 15, 5840 (1977).CrossRefGoogle Scholar
9Calleja, J.M., Kuhl, J., and Cardona, M., Phys. Rev. B 17, 876 (1978).CrossRefGoogle Scholar
10Lax, M., Symmetry Principles in Solid State and Molecular Physics (John Wiley, New York, 1974), Chap. 12.Google Scholar
11Berry, L. G. and Thompson, R. M., Geol. Soc. Amer. Mem. 85, 23 (1962).Google Scholar
12Wyckoff, R. W. G., Crystal Structures (John Wiley, New York, 1963), Vol. 1, p. 26.Google Scholar
13Mani, K. K. and Ramani, R., Phys. Stat. Solidi B 61, 659 (1974).CrossRefGoogle Scholar
14Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
15Nemanich, R. J. and Solin, S. A., Phys. Rev. B 20, 392 (1979).CrossRefGoogle Scholar
16Koster, G. F., in Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic Press, New York, 1957), Vol. 5.Google Scholar
17Al-Jishi, R. and Dresselhaus, G., Phys. Rev. B 26, 4514 (1982).CrossRefGoogle Scholar
18Nemanich, R.J. and Solin, S.A., Solid State Comm. 23, 417 (1977).CrossRefGoogle Scholar
19Nakamizo, M., Kammereck, R., and Walker, P. L. Jr, Carbon 12, 259 (1974).CrossRefGoogle Scholar
20Nathan, M.I., Smith, J.E. Jr, and Tu, K.N., J. Appl. Phys. 45, 2370 (1974).CrossRefGoogle Scholar
21Nakamizo, M., Honda, H., Inagaki, M., and Hishiyama, Y., Carbon 15, 295 (1977).CrossRefGoogle Scholar
22Vidano, R. and Fischbach, D.B., J. Amer. Ceram. Soc. 61, 13 (1978).CrossRefGoogle Scholar
23Sato, Y., Kamo, M., and Setaka, N., Carbon 16, 279 (1978).CrossRefGoogle Scholar
24Nakamizo, M., Honda, H., and Inagaki, M., Carbon 16, 281 (1978).CrossRefGoogle Scholar
25Lespade, P., Al-Jishi, R., and Dresselhaus, M. S., Carbon 20, 427 (1982).CrossRefGoogle Scholar
26Dillon, R. O., Woollam, J. A., and Katkanant, V., Phys. Rev. B 29, 3482 (1984).CrossRefGoogle Scholar
27Mernagh, T. P., Cooney, R. P., and Johnson, R. A., Carbon 22, 39 (1984).CrossRefGoogle Scholar
28Nakamizo, M. and Tamai, K., Carbon 22, 197 (1984).CrossRefGoogle Scholar
29Lespade, P., Marchand, A., Couzi, M., and Cruege, F., Carbon 22, 375 (1984).CrossRefGoogle Scholar
30Fischbach, D. B. and Couzi, M., Carbon 24, 365 (1986).CrossRefGoogle Scholar
31Bowling, R., Packard, R., and McCreey, R. L., J. Electrochem. Soc. 135, 1605 (1988).CrossRefGoogle Scholar
32Woollam, J. A., Chang, H., and Natarajan, V., Appl. Phys. Comm. 5, 263 (1985).Google Scholar
33Wada, N., Gaczi, P. J., and Solin, S. A., J. Non-Cryst. Solids 35/36, 543 (1980).CrossRefGoogle Scholar
34Ramsteiner, M., Wagner, J., Wild, Ch., and Koidl, P., J. Appl. Phys. 62, 729 (1987).CrossRefGoogle Scholar
35Beeman, D., Silverman, J., Lynds, R., and Anderson, M. R., Phys. Rev. B 30, 870 (1984).CrossRefGoogle Scholar
36Trueb, L. F. and Barrett, C. S., Amer. Mineral. 57, 1664 (1972).Google Scholar
37Trueb, L. F. and Butterman, W. C., Amer. Mineral. 54, 412 (1969).Google Scholar
38Trueb, L. F. and Wys, E. C. De, Science 165, 799 (1969).CrossRefGoogle Scholar
39Bundy, F. P. and Kasper, J. S., J. Chem. Phys. 46, 3437 (1967).CrossRefGoogle Scholar
40Solin, S. A. and Kobliska, R. J., in Proc. 5th Internat. Conf. on Amorphous and Liquid Semiconductors, edited by Stoke, J. and Brenig, W. (Taylor and Francis, Lond., 1973), p. 1259.Google Scholar
41Sharma, S. K., Mao, H. K., Bell, P. M., and Xu, J. Z., J. Raman Spectros. 16, 350 (1985).CrossRefGoogle Scholar
42Boppart, H., Straaten, J. van, and Silvera, I. F., Phys. Rev. B32, 1423 (1985).CrossRefGoogle Scholar
43Sherman, W.F., J. Phys. C: Solid State Phys. 18, L973 (1985).CrossRefGoogle Scholar
44Hanfland, H., Syassen, K., Fahy, S., Louie, S.G., and Cohen, M. L., Physica 139/140 B, 516 (1986).Google Scholar
45Zorabedian, P. and Adar, F., Appl. Phys. Lett. 43, 177 (1983).CrossRefGoogle Scholar