Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T11:21:36.307Z Has data issue: false hasContentIssue false

Characterization of CdTe:Zn:V crystals grown under microgravity conditions

Published online by Cambridge University Press:  31 January 2011

V. Corregidor*
Affiliation:
Departamento Fisica de Materiales, Universidad Auto’noma de Madrid, 28049 Madrid, Spain
V. Babentsov
Affiliation:
Kristallographisches Institut, Universitat Freiburg, Hebelstrasse 25, D-79104 Freiburg, Germany
J. L. Castaño
Affiliation:
Departamento Fisica Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
M. Fiederle
Affiliation:
Kristallographisches Institut, Universitat Freiburg, Hebelstrasse 25, D79104 Freiburg, Germany
T. Feltgen
Affiliation:
Kristallographisches Institut, Universitat Freiburg, Hebelstrasse 25, D79104 Freiburg, Germany
K. Benz
Affiliation:
Kristallographisches Institut, Universitat Freiburg, Hebelstrasse 25, D79104 Freiburg, Germany
E. Dieguez
Affiliation:
Departamento Fisica Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

CdTe:Zn:V crystals grown by the seeded Bridgman method in microgravity conditions during the STS95-Spacelab-AGHF-1 mission and in the ground laboratory (l-g) were analyzed and compared. The results obtained clearly show that the structural quality of the space crystal is better. Density of inclusions, concentration of dislocations, and presence of stresses are lower in the microgravity-grown (μ-g) crystal. The l-g crystal contains twins and grains from the beginning of the growth process, that is, from the near-seed region. In general, the concentration of inclusions and amount of segregated impurities on the l-g crystal are larger than in the μ-g crystal. X-ray rocking curves and low-temperature photoluminescence spectra demonstrate the relatively high quality of both crystals on a microscale at the beginning of the growth and show that the l-g conditions were worse at the end. The results of this investigation demonstrate a positive role of contactless growth and μ-g conditions in the melt in suppressing the creation of inclusions and dislocations.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Laasch, M., Kunz, T., Eiche, C., Fiederle, M., Joerger, W., Kloess, G., and Benz, K.W., J. Crystal Growth 174, 696 (1997).CrossRefGoogle Scholar
2.Larson, D.J., Alexander, J.I., Giies, D., and Carson, F.M., NASA Conf. Publication 3272, 1, 129 (1994).Google Scholar
3.Duffar, T., Paret-Harter, I., and Dusserre, P., J. Cryst. Growth 100, 171 (1990).CrossRefGoogle Scholar
4.Fiederle, M., Benz, K.W., Babentsov, V., Garandet, J.P., Duffar, T., Corregidor, V., and Dieguez, E., J. Cryst. Growth (in press).Google Scholar
5.Babentsov, V., Corregidor, V., Benz, K., Feltgen, T., Fiederle, M., and Dieguez, E., SPIE 3794, 88 (1999).Google Scholar
6.Rudolph, P., Engel, A., Schentke, I., and Grochoki, A., J. Cryst. Growth 147, 297 (1995).CrossRefGoogle Scholar
7.Pautrat, J.L., Francou, J.M., Magnea, N., Molva, E., and Saminadayar, K., J. Cryst. Growth 72, 194 (1985), and references therein.CrossRefGoogle Scholar
8.Duncan, W.M., Koestner, R.J., Tregilgas, J.H., Liu, H.Y., and Chen, M.C. in Properties of II-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic Systems, edited by Bartoli, F.J. Jr., Schaake, H.F., and Schetzina, J.F. (Mater. Res. Soc. Symp. Proc. 161, Pittsburgh, PA, 1990), p. 39.Google Scholar