Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T17:44:08.236Z Has data issue: false hasContentIssue false

Changes in surface area and composition during grinding of silicon in environments of various quality

Published online by Cambridge University Press:  03 March 2011

Klára Tkáčová
Affiliation:
Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slavakia
Nadežda Števulová
Affiliation:
Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slavakia
Zdeněk Bastl
Affiliation:
J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Pavel Stopka
Affiliation:
Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Magdaléna Bálintová
Affiliation:
Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
Get access

Abstract

Changes in particle size, surface properties, and composition brought about by planetary grinding of silicon in air and various permittivity liquids were investigated. Using a variety of spectroscopic techniques (ESR, IRS, and XPS), a mechanically induced surface oxidation was proved. While at grinding in air and organic liquids a part of the centers originating from dangling orbitals on SiIII are preserved, the properties of water-ground silicon are fully governed by the oxide surface shell. The most effective particle size reduction and surface protection can be reached by grinding in nonpolar liquids.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iwata, S. and Ishiyaka, , Mater. Trans. JIM 33, 675 (1992).CrossRefGoogle Scholar
2Delia Sala, D. and Fortunate, G., J. Electrochem. Soc. 137, 2550 (1990).CrossRefGoogle Scholar
3Niwano, M., Suemitsu, M., Ishibashi, Y., Takeda, Z., Miyamoto, N., and Honma, K., J. Vac. Sci. Technol. A 10 (3), 1 (1992).Google Scholar
4Niwano, M., Katakura, H., Takeda, Y., Takakuwa, Y., Miyamoto, N., and Maki, M., J. Vac. Sci. Technol. A 10 (2) 339 (1992).CrossRefGoogle Scholar
5Niwano, M., Katakura, H., Takeda, Y., Takakuwa, Y., Miyamoto, N., Hiraiwa, A., and Yagi, K., J. Vac. Sci. Technol. A 9 (2), 195 (1991).CrossRefGoogle Scholar
6Pai, P. G., Chao, S. S., and Takagi, Y., J. Vac. Sci. Technol. A 4, 689 (1986).CrossRefGoogle Scholar
7Revesz, A.G. and Golstein, B., Surf. Sci. 14, 361 (1969).CrossRefGoogle Scholar
8Waters, G.K. and Estle, T.L., J. Appl. Phys. 32, 1854 (1961).CrossRefGoogle Scholar
9Nishi, Y., Jpn. J. Appl. Phys. 10, 52 (1971).CrossRefGoogle Scholar
10Haneman, D., Phys. Rev. 170, 705 (1968).CrossRefGoogle Scholar
11Chung, M.F. and Haneman, D., J. Appl. Phys. 37, 1879 (1966).CrossRefGoogle Scholar
12Caplan, P.J., Herbert, J.N., Wagner, B.E., and Pointdexter, E.H., Surf. Sci. 54, 33 (1976).CrossRefGoogle Scholar
13Kolbanev, I.V. and Butyagin, P. Yu., Kinet. Katal. 23, 327 (1982).Google Scholar
14Stephen, R.G. and Riley, F.L., J. European Ceram. Soc. 5, 219 (1989).CrossRefGoogle Scholar
15Shirley, D.A., Phys. Rev. B 5, 4709 (1972).CrossRefGoogle Scholar
16Scofield, J. H., J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).CrossRefGoogle Scholar
17Brunauer, S., Emmet, P.H., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
18Kiselev, V.F. and Krilov, O.V., Adsorption Processes on Semiconductor and Dielectric Surfaces (Izd. Nauka, Moscow, USSR, 1978), in Russian.Google Scholar
19Dubinin, M.M., in Adsorption and Porosity: Methods of Adsorption Isotherm Determination and Specific Surface Area of Adsorbents, edited by Dubinin, M. M. and Serpinskii, V. V. (Proc. 4th Soviet Conf. on Theoretical Problems of Adsorption, Izd. Nauka, Moscow, USSR, 1976), p. 105in Russian.Google Scholar
20Neymark, I. E., in Adsorption and Porosity: On the Role of Chemical Nature of the Adsorbent Surface in Determination of their Porous Structure, edited by Dubinin, M. M. and Serpinskii, V. V. (Proc. 4th Soviet Conf. on Theoretical Problems of Adsorption, Izd. Nauka, Moscow, USSR, 1976), p. 27, in Russian.Google Scholar
21Neymark, I.E., Vest. Akad. Nauk BSSR 1, 102 (1966).Google Scholar
22Heinicke, G., Tribochemistry (Akademie-Verlag, Berlin, GDR, 1984).Google Scholar
23Tkáčová, K., Mechanical Activation of Minerals (Elsevier, Amsterdam, Oxford, New York, Tokyo, 1989).Google Scholar
24Kiselev, V.F., Krasilnikov, K.G., and Khodakov, G. S., Dokl. Akad. Nauk, SSSR 130, 1273 (1960).Google Scholar
25Nyquist, R. A. and Kagel, R. O., Infrared Spectra of Inorganic Compounds (Academic Press, New York and London, 1971).CrossRefGoogle Scholar
26Himpsel, F. J., McFeely, F. E., Taleb-Ibrahimi, A., Yamoff, J. A., and Hollinger, G., Phys. Rev. B 38, 6084 (1988).CrossRefGoogle Scholar
27Tanuma, S., Powell, C. J., and Penn, D.R., Surf. Interface Anal. 11, 577 (1988).CrossRefGoogle Scholar
28Sharapatka, T.J., Thin Solid Films 226, 219 (1993).CrossRefGoogle Scholar
29Hollinger, G., Jugnet, Y., Petrosa, P., and Due, T. M., Chem. Phys. Lett. 36, 441 (1975).CrossRefGoogle Scholar