Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T03:37:14.323Z Has data issue: false hasContentIssue false

Cerium-doped lutetium aluminum garnet optically transparent ceramics fabricated by a sol-gel combustion process

Published online by Cambridge University Press:  01 June 2006

Xue-Jian Liu*
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of Chinaand Advanced Materials Laboratory, National Institute for Materials Sciences (NIMS), Tsukuba, Ibaraki 305-0044, Japan
Hui-Li Li
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
Rong-Jun Xie
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Sciences (NIMS), Tsukuba, Ibaraki 305-0044, Japan
Naoto Hirosaki
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Sciences (NIMS), Tsukuba, Ibaraki 305-0044, Japan
Xin Xu
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Sciences (NIMS), Tsukuba, Ibaraki 305-0044, Japan
Li-Ping Huang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nano-sized cerium-doped lutetium aluminum garnet (LuAG:Ce) powders were prepared via a sol-gel combustion process from a mixed solution of metal nitrates, using organic glycine as a fuel. The purified crystalline phase of LuAG:Ce was obtained after calcination at 1000 °C for 2 h. The obtained phosphors were agglomerated and had a foamy-like morphology, consisting of pointed crystallites with uniform size of about 40 nm. Both the photoluminescence and the radioluminescence of the calcined powders showed the same two emission bands, corresponding to transitions from the lowest 5d excited state (2D) to the 4f ground state of Ce3+ (2F5/2, 2F7/2). Using the prepared powders, polycrystalline LuAG:Ce optically transparent ceramics were successfully fabricated at 1850 °C for 10 h under vacuum without sintering aids and annealed at 1450 °C for 20 h in air. The sintered ceramics are transparent with an in-line light transmittance in the visible wavelength range of about 50% and have a uniform microstructure with an average grain size of about 8 μm. The radioluminescence of the transparent ceramics is similar to that for calcined powders, except higher in intensity.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Greskovich, C., Duclos, S.: Ceramics scintillators. Annu. Rev. Mater. Sci. 27, 69 (1997).CrossRefGoogle Scholar
2.van Eijk, C.W.E.: Development of inorganic scintillators. Nucl. Instrum. Methods Phys. Res., Sect. A 392, 285 (1997).CrossRefGoogle Scholar
3.van Eijk, C.W.E.: Inorganic-scintillator development. Nucl. Instrum. Meth. A 460, 1 (2001).CrossRefGoogle Scholar
4.Ryskin, N.N., Dorenbost, P., van Eijk, C.W.E., Batygov, S.K.: Scintillation properties of Lu3Al5−x ScxO12 crystals. J. Phys.: Condens. Mater. 6, 10423 (1994).Google Scholar
5.Zorenko, Y., Konstankevych, I., Globus, M., Grinyov, B., Lyubinskiy, V.: New scintillation detectors based on oxide single crystal films for biological microtomography. Nucl. Instrum. Methods Phys. Res., Sect. A 505, 93 (2003).CrossRefGoogle Scholar
6.Zorenko, Yu., Gorbenko, V., Konstantkevych, I., Grinev, B., Globus, M.: Scintillation properties of Lu3Al5O12:Ce single-crystalline films. Nucl. Instrum. Methods Phys. Res., Sect. A 486, 309 (2002).CrossRefGoogle Scholar
7.van Eijk, C.W.E., Andriessen, J., Dorenbos, P., Visser, R.: Ce3+ doped inorganic scintillators. Nucl. Instrum. Methods Phys. Res., Sect. A 348, 546 (1994).CrossRefGoogle Scholar
8.Nikl, M., Mihokova, E., Mares, J.A., Vedda, A., Martini, M., Nejezchleb, K., Blazek, K.: Traps and timing characteristics of LuAG:Ce3+ scintillator. Phys. Status Solidi 181, R10 (2000).3.0.CO;2-9>CrossRefGoogle Scholar
9.Zorenko, Y., Gorbenko, V., Konstankevych, I., Voloshinovskii, A., Stryganyuk, G., Mikhailin, V., Kolobanov, V., Spassky, D.: Single-crystalline films of Ce-doped YAG and LuAG phosphors: Advantages over bulk crystals analogues. J. Lumin. 114, 85 (2005).CrossRefGoogle Scholar
10.Mares, J.A., Nikl, M., Beitlerova, A., Solovieva, N., Ambrosio, C.D., Blazek, K., Maly, P., Nejezchleb, K., Fabeni, P., Pazzi, G.P.: Ce3+-doped scintillators: Status and properties of (Y, Lu) aluminium perovskites and garnets. Nucl. Instrum. Methods Phys. Res., Sect. A 537, 271 (2005).CrossRefGoogle Scholar
11.Ogino, H., Yoshikawa, A., Lee, J.H., Nikl, M., Solovieva, N., Fukuda, T.: Scintillation properties of Yb3+-doped garnet crystals. Radiat. Meas. 38, 485 (2004).CrossRefGoogle Scholar
12.Ogino, H., Yoshikawa, A., Lee, J.H., Nikl, M., Solovieva, N., Fukuda, T.: Growth and characterization of Yb3+ doped garnet crystals for scintillator application. Opt. Mater. 26, 535 (2004).CrossRefGoogle Scholar
13.Yoshikawa, A., Ogino, H., Lee, J.H., Nikl, M., Solovieva, N., Garnier, N., Dujardin, C., Lebbou, K., Pedrini, C., Fukuda, T.: Growth and optical properties of Yb doped new scintillator crystals. Opt. Mater. 24, 275 (2003).CrossRefGoogle Scholar
14.Nagarkar, V.V., Miller, S.R., Tipnis, S.V., Lempicki, A., Brecher, C., Lingertat, H.: A new large area scintillator screen for x-ray imaging. Nucl. Instrum. Methods Phys. Res., Sect. B 213, 250 (2004).CrossRefGoogle Scholar
15.Brecher, C., Bartram, R.H., Lempicki, A.: Hole traps in Lu2O3:Eu ceramic scintillators. I. Persistent afterglow. J. Lumin. 106, 159 (2004).CrossRefGoogle Scholar
16.Zych, E., Trojan-Piegza, J., Kepinski, L., Dorenbos, P.: Microstructure and spectroscopy of Lu2O3:Eu prepared using various synthesis techniques. Solid State Phenom. 99–100, 25 (2004).CrossRefGoogle Scholar
17.Polizzi, S., Bucella, S., Speghini, A., Vetrone, F., Naccache, R., Boyer, J.C., Capobianco, J.A.: Nanostructured lanthanide-doped Lu2O3 obtained by propellant synthesis. Chem. Mater. 16, 1330 (2004).CrossRefGoogle Scholar
18.Li, J.G., Ikegami, T., Wang, Y., Mori, T.: Reactive ceria nanopowders via carbonate precipitation. J. Am. Ceram. Soc. 85, 2376 (2002).CrossRefGoogle Scholar
19.Li, J.G., Ikegami, T., Wang, Y., Mori, T.: 10-mol%-Gd2O3-doped CeO2 solid solution via carbonate coprecipitation: A comparative study. J. Am. Ceram. Soc. 86, 915 (2003).CrossRefGoogle Scholar
20.Li, J.G., Ikegami, T., Mori, T., Yajima, Y.: Wet-chemical routes leading to scandia nanopowders. J. Am. Ceram. Soc. 86, 1493 (2003).CrossRefGoogle Scholar
21.Pechini, M.P.: Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. U.S. Patent No. 3 330 697 (July 11, 1967).Google Scholar
22.Zhang, J.J., Ning, J.W., Liu, X.J., Pan, Y.B., Huang, L.P.: A novel synthesis of phase-pure ultrafine YAG:Tb phosphor with different Tb concentration. Mater. Lett. 57, 3077 (2003).CrossRefGoogle Scholar
23.Zhang, J.J., Ning, J.W., Liu, X.J., Pan, Y.B., Huang, L.P.: Low-temperature synthesis of single-phase nanocrystalline YAG:Eu phosphor. J. Mater. Sci. Lett. 22, 13 (2003).CrossRefGoogle Scholar
24.Zhang, J.J., Ning, J.W., Liu, X.J., Pan, Y.B., Huang, L.P.: Synthesis of ultrafine YAG:Tb phosphor by nitrate-citrate sol-gel combustion process. Mater. Res. Bull. 38, 1249 (2003).CrossRefGoogle Scholar
25.Qiu, F.G., Pu, X.P., Li, J., Liu, X.J., Pan, Y.B., Guo, J.K.: Thermal behavior of the YAG precursor prepared by sol-gel combustion process. Ceram. Int. 31, 663 (2005).CrossRefGoogle Scholar
26.Zhang, J.J., Huang, L.P., Xu, J.: Preparation and microstructure of transparent Nd:YAG ceramics. J. Chin. Ceram. Soc. 33, 678 2005 in Chinese.Google Scholar
27.Li, H.L., Liu, X.J., Huang, L.P.: Fabrication of transparent cerium doped lutetium aluminum garnet (LuAG: Ce) ceramics by a solid-state reaction method. J. Am. Ceram. Soc. 88, 3226 (2005).CrossRefGoogle Scholar
28.Li, H.L., Liu, X.J., Huang, L.P.: Synthesis of nanocrystalline lutetium aluminum garnet powders by co-precipitation method. Ceram. Int. 32, 309 (2006).CrossRefGoogle Scholar
29.Liu, X.J., Li, H.L., Xie, R.J., Zeng, Y., Huang, L.P.: Spectroscopic properties of nano-sized cerium-doped lutetium aluminum garnet phosphors via sol-gel combustion process. J. Lumin. (in press).Google Scholar
30.Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J.: Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10, 6 (1990).CrossRefGoogle Scholar
31.Tao, Y., Zhao, G., Zhang, W., Xia, S.: Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Mater. Res. Bull. 32, 501 (1997).Google Scholar
32.Kim, Y.K., Kim, H.K., Kim, D.K., Cho, G.: Synthesis of Eu-doped (Gd,Y)2O3 transparent optical ceramic scintillator. J. Mater. Res. 19, 413 (2004).CrossRefGoogle Scholar
33.Zhou, Y.H., Lin, J., Yu, M., Wang, S.B., Zhang, H.J.: Synthesis-dependent luminescence properties of Y3Al5O12: Re3+ (Re = Ce, Sm, Tb) phosphors. Mater. Lett. 56, 628 (2002).CrossRefGoogle Scholar
34.Lin, J., Su, Q.: Luminescence and energy transfer of rare-earth-metal ions in Mg2Y8(SiO4)6O2. J. Mater. Chem. 5, 1151 (1995).CrossRefGoogle Scholar
35.Lempicki, A., Brecher, C., Szupryczynski, P., Lingertat, H., Nagarkar, V.V., Tipnis, S.V., Miller, S.R.: A new lutetia-based ceramic scintillator for x-ray imaging. Nucl. Instrum. Methods Phys. Res., Sect. A 488, 579 (2002).CrossRefGoogle Scholar