Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T20:33:34.805Z Has data issue: false hasContentIssue false

Carbothermal reduction and nitridation reaction of SiOx and preoxidized SiOx: Formation of α-Si3N4 fibers

Published online by Cambridge University Press:  03 March 2011

P.D. Ramesh
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
K.J. Rao*
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

The chemical composition of amorphous SiOx has been analyzed by oxidation studies and is found to be SiO1.7. SiO1.7 appears to be a monophasic amorphous material on the basis of 29Si nuclear magnetic resonance, high resolution electron microscopy, and comparative behavior of a physical mixture of Si and SiO2. Carbothermal reduction and nitridation reactions have been carried out on amorphous SiO1.7 and on amorphous SiO2 obtained from oxidation of SiO1.7. At 1623 K reactions of SiO1.7 lead exclusively to the formation of Si2N2O, while those of SiO2 lead exclusively to the formation of Si3N4. Formation of copious fibers of α-Si3N4 was observed in the latter reaction. It is suggested that the partial pressure of SiO in equilibrium with reduced SiO1.7 and SiO2 during the reaction is the crucial factor that determines the chemistry of the products. The differences in the structures of SiO2 and SiO1.7 have been considered to be the origin of the differences in the SiO partial pressures of the reduction products formed prior to nitridation. The effect of the ratios, C:SiO1.7 and C:SiO2, in the reaction mixture as well as the effect of the temperature on the course of the reactions have also been investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sanderson, R. T., Polar Covalence (Academic Press Inc., London, 1983), p. 53.Google Scholar
2Philipp, H. R., J. Non-Cryst. Solids 8–10, 627 (1972).CrossRefGoogle Scholar
3Engelke, R., Roy, Th., Neumann, H. G., and Hiibner, K., Phys. Status Solidi 65, 271 (1981).CrossRefGoogle Scholar
4Temkin, R. J., J. Non-Cryst. Solids 17, 215 (1975).CrossRefGoogle Scholar
5Lin, S. C. H. and Joshi, M., Electrochem. Soc. 116, 1740 (1969).CrossRefGoogle Scholar
6Yasaitis, J. A. and Kaplow, R., J. Appl. Phys. 43, 995 (1972).CrossRefGoogle Scholar
7Kawamura, H. and Matsumura, M., Solid State Commun. 32, 83 (1979).CrossRefGoogle Scholar
8Mehner, H., German Patent 88999, Sept. 30 (1896).Google Scholar
9Hendry, A. and Jack, K. H., Special Ceramics 6, edited by Popper, P. (The Brit. Ceram. Res. Ass., Stoke-on-Trent, England, 1975), p. 199.Google Scholar
10Lee, J. G. and Cutler, I. B., Nitrogen Ceramics, edited by Riley, F. L. (Nordoff International Publishers, Leyden, The Netherlands, 1977), p. 175.CrossRefGoogle Scholar
11Inoue, H., Komeya, K., and Tsuge, A., J. Am. Ceram. Soc. 65, C-205 (1982).CrossRefGoogle Scholar
12Komeya, K. and Inoue, H., J. Mater. Sci. 10, 1243 (1975).CrossRefGoogle Scholar
13Szweda, A., Henry, A., and Jack, K. H., Special Ceramics 7, edited by Popper, P. (The Brit. Ceram. Res. Ass., Stoke-on-Trent, England, 1981), p. 107.Google Scholar
14Mori, M., Inoue, H., and Ochiai, T., Prog, in Nitrogen Ceramics (Martinus Nijhoff, The Hague, The Netherlands, 1983), p. 149.CrossRefGoogle Scholar
15Cho, Y. W. and Charles, J. A., Mater. Sci. Technol. 7, 289 (1991).CrossRefGoogle Scholar
16Durham, S. J. P., Shanker, K., and Drew, R. A. L., J. Am. Ceram. Soc. 74, 31 (1991).CrossRefGoogle Scholar
17Siddiqi, S. A. and Hendry, A., J. Mater. Sci. 20, 3230 (1982).CrossRefGoogle Scholar
18Perera, D. S., J. Mater. Sci. 22, 2411 (1985).CrossRefGoogle Scholar
19Zhang, S. C. and Cannon, W. R., J. Am. Ceram. Soc. 67, 691 (1984).CrossRefGoogle Scholar
20Figush, V. and Licko, T., High Tech Ceramics, edited by Vincenzini, P. (Elsevier Science, Amsterdam, 1987), p. 517.Google Scholar
21Mitomo, M. and Yoshioka, Y., Adv. Ceram. Mater. 2, 253 (1987).CrossRefGoogle Scholar
22Evans, J. W. and Chatterji, S. K., J. Phys. Chem. 62, 1064 (1958).CrossRefGoogle Scholar
23Huttinger, K. J., High Temp. High Press. 1, 221 (1969).Google Scholar
24Meisser, D. R. and Wong, P., J. Am. Ceram. Soc. 56, 480 (1973).CrossRefGoogle Scholar
25Atkinson, A., Moulson, A. J., and Roberts, E. W., J. Am. Ceram. Soc. 59, 285 (1976).CrossRefGoogle Scholar
26Moulson, A. J., J. Mater. Sci. 14, 1017 (1979).CrossRefGoogle Scholar
27Jennings, H. M., J. Mater. Sci. 18, 951 (1983).CrossRefGoogle Scholar
28Boyer, S. M. and Moulson, A. J., J. Mater. Sci. 13, 1637 (1978).CrossRefGoogle Scholar
29Dawson, W. M. and Moulson, A. J., J. Mater. Sci. 13, 2289 (1978).CrossRefGoogle Scholar
30Dervibegovic, H. and Riley, F. L., J. Mater. Sci. 14, 1265 (1979).CrossRefGoogle Scholar
31Riley, F. L., Nitrogen Ceramics, edited by Riley, F.L. (Nordoff International Publishers, Leyden, The Netherlands, 1977), p. 265.CrossRefGoogle Scholar
32Kaneko, Y., Ameyama, K., and Iwasaki, H., J. Soc. Mater. Sci. Jpn. 37, 65 (1988).CrossRefGoogle Scholar
33Knippenberg, W. E. and Verspui, , Silicon Carbide–1968, edited by Henisch, H. K. and Roy, R. (Pergamon Press, London, 1969), p. 33.CrossRefGoogle Scholar
34Hanna, S. B., Mansour, A. L. N., and Taha, A. S., Trans. J. Brit. Ceram. Soc. 84, 18 (1985).Google Scholar
35Johnson, R. C., Alley, J. K., Warwick, W. H., Wilbur, H., and Shell, H. R., U.S. Patent 3 244480, April 5 (1966).Google Scholar
36Wang, M. J. and Wada, H., J. Mater. Sci. 25, 1690 (1990).CrossRefGoogle Scholar
37Saito, H., Hayashi, T., and Miura, K., Nippon Kagaku Kaishi, 401 (1982).CrossRefGoogle Scholar
38Hayashi, T., Kawabe, S., and Saito, H., Yogyo Kyokaishi 94, 19 (1986).Google Scholar
39Mizuhara, M., Noguchi, M., Ishihara, T., Satoh, A., Hiramatsu, K., and Takita, Y., J. Am. Ceram. Soc. 74, 846 (1991).CrossRefGoogle Scholar
40Cunningham, A. L. and Davis, L. G., SAMPLE 15, 120 (1969).Google Scholar
41Tanaka, M. and Kawabe, T., Japanese Patent 1324479 (1986).Google Scholar
42Kohtoku, Y. and Masunaga, K., Japanese Patent Provisional Publication, 61-275199 (1986).Google Scholar
43Isoda, T. and Arai, M., Jpn. Kokai Tokkyo Koho, Jpn. Patent No. 60-145903 (1985).Google Scholar
44Niwano, K., Silicon Nitride-1, edited by Somiya, S., Mitomo, M., and Yoshimura, M. (Elsevier Applied Sciences, London and New York, 1990), Chap. 10.Google Scholar
45Kijima, K., Setaka, N., and Tanaka, H., J. Cryst. Growth 24/25, 183 (1974).CrossRefGoogle Scholar
46Motojima, S., Ueno, S., Hattori, T., and Iwanaga, H., J. Cryst. Growth 96, 383 (1989).CrossRefGoogle Scholar
47Brauer, G., Handbook of Preparative Inorganic Chemistry (Academic Press, New York, 1963), Vol. 1, p. 458.Google Scholar
48Brewer, L. and Edwards, R. K., J. Phys. Chem. 58, 351 (1954).CrossRefGoogle Scholar
49Dupree, R., Holland, D., and Williams, D. S., Philos. Mag. 50, L13 (1984a).CrossRefGoogle Scholar
50Dupree, R., Lewis, M. H., and Smith, M. E., J. Am. Chem. Soc. Ill, 5125 (1989).CrossRefGoogle Scholar
51Dupree, R., Lewis, M. H., Leng-ward, G., and Williams, D.S., J. Mater. Sci. Lett. 4, 393 (1985).CrossRefGoogle Scholar
52Wada, N., Solin, S. A., Wong, J., and Prochazka, S., J. Non-Cryst. Solids 43, 7 (1981).CrossRefGoogle Scholar
53Damodaran, K. V., Nagarajan, V. S., and Rao, K. J., J. Non-Cryst. Solids 124, 233 (1990).CrossRefGoogle Scholar
54Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, New York, 1989), p. 221.Google Scholar
55Brice, J. C., The Growth of Crystals from Liquids (North-Holland Publishing Co., Amsterdam, The Netherlands, 1973), Chap. 3.Google Scholar