Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:55:14.175Z Has data issue: false hasContentIssue false

Carbon–silica alloy material as silicon carbide precursor prepared from phenol resin and ethyl silicate

Published online by Cambridge University Press:  31 January 2011

Masaki Narisawa
Affiliation:
Department of Metallurgy and Materials Science, College of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai 599–8531, Japan
Kentaro Yamane
Affiliation:
Department of Metallurgy and Materials Science, College of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai 599–8531, Japan
Yoshio Okabe
Affiliation:
Department of Metallurgy and Materials Science, College of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai 599–8531, Japan
Kiyohito Okamura
Affiliation:
Department of Metallurgy and Materials Science, College of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai 599–8531, Japan
Yasuo Kurachi
Affiliation:
Konica Corporation, No. 1, Sakura-machi, Hino-shi, Tokyo 191–0063, Japan
Get access

Extract

Three kinds of inorganic–organic hybrid gel sheets were prepared from the liquid mixtures of ethyl silicate and water–soluble phenol resin. The prepared transparent gel sheets were fired at various temperatures. The density of the fired sheets jumped up at 773–1023 K with disappearance of organic groups. The sheets kept the prepared shape after the 1273 K firing, and their density increased with the silica content. After the firing at 1873 K, the sheets with high carbon content (C/SiO2: 5.60, 3.52) were converted into the sheets composed of silicon carbide aggregate with excess carbon, while the sheet with low carbon content (C/SiO2: 1.43) was converted into the fragile powders.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mark, J.E., Heterogeneous Chem. Rev. 3, 307 (1996).3.0.CO;2-3>CrossRefGoogle Scholar
2.Premachandra, J., Kumudinie, C., Zhao, W., Mark, J.E., Dang, T.D., Chen, J.P., and Arnold, F.E., J. Sol-Gel Sci. Technol. 7, 163 (1996).CrossRefGoogle Scholar
3.Jackson, C.L., Bouer, B.J., Nakatani, A.I., and Barnes, J.D., Chem. Mater. 8, 727 (1996).CrossRefGoogle Scholar
4.Wei, G.C., Kennedy, C.R., and Harris, L.A., Ceramic Bulletin 63, 1054 (1984).Google Scholar
5.Tanaka, H. and Kurachi, Y., Ceramic International 14, 109 (1988).CrossRefGoogle Scholar
6.Ono, K. and Kurachi, Y., J. Mater. Sci. 24, 388 (1991).CrossRefGoogle Scholar
7.Shimoo, T., Takemura, M., Okamura, K., Kurachi, Y., and Kajiwara, M., J. Ceram. Soc. Jpn. 102, 880 (1994).CrossRefGoogle Scholar
8.Hasegawa, I., Nakamura, T., Motojima, S., and Kajiwara, M., J. SolGel Sci. Technol. 8, 577 (1997).Google Scholar
9.Ueno, S., Kameda, K., Yu, J., Hiragushi, K., and Miura, Y., J. Ceram. Soc. Jpn. 106, 688 (1998).CrossRefGoogle Scholar
10.Narisawa, M., Okabe, Y., Iguchi, M., Okamura, K., and Kurachi, Y., J. Sol-Gel Sci. Technol. 12, 143 (1998).CrossRefGoogle Scholar
11.Huang, D., Ikuhara, Y., Narisawa, M., and Okamura, K., J. Am. Ceram. Soc. 81, 3173 (1998).CrossRefGoogle Scholar
12.Narisawa, M., Okabe, Y., Okamura, K., and Kurachi, Y., J. Ceram. Soc. Jpn. 107, 285 (1999).CrossRefGoogle Scholar
13.Morikawa, A., Iyoku, Y., Kakimoto, M., and Imai, Y., Polym. J. 24, 107 (1992).CrossRefGoogle Scholar
14.Haraguchi, K. and Usami, Y., Chem. Lett. 51 (1997).CrossRefGoogle Scholar
15.Haraguchi, K., Usami, Y., and Ono, Y., J. Mater. Sci. 33, 3337 (1998).CrossRefGoogle Scholar
16.Fitzer, E., Schafer, W., and Yamada, S., Carbon 7, 643 (1969).CrossRefGoogle Scholar
17.Fitzer, E. and Schafer, W., Carbon 8, 353 (1970).CrossRefGoogle Scholar
18.Cauwelaert, F.H.V, Jacobs, P.A., and Uytterhoeven, J.B., J. Phys. Chem. 76, 1434 (1972).CrossRefGoogle Scholar
19.Morrow, B.A. and Cody, I.A., J. Phys. Chem. 77, 1465 (1973).CrossRefGoogle Scholar
20.Davis, K.M., Agarwal, A., Tomozawa, M., and Hirao, K., J. Non-Cryst. Solids 203, 27 (1996).CrossRefGoogle Scholar
21.Tanaka, K., Ohzeki, K., Yamabe, T., and Yata, S., Synth. Met. 9, 41 (1984).CrossRefGoogle Scholar
22.Trick, K.A. and Saliba, T.E., Carbon 33, 1509 (1995).CrossRefGoogle Scholar
23.Lee, J.G. and Cutler, I.B., Am. Ceram. Soc. Bull. 54, 195 (1975).Google Scholar
24.Shimoo, T., Mizutaki, F., Ando, S., and Kimura, H., J. Jpn. Inst. Met. 52, 279 (1988).CrossRefGoogle Scholar
25.Kevorkijan, V.M., Komac, M., and Kolar, D., J. Mater. Sci. 27, 2705 (1992).CrossRefGoogle Scholar
26.Seo, W.S. and Koumoto, K., J. Am. Ceram. Soc. 79, 1777 (1996).CrossRefGoogle Scholar
27.Seo, W.S., Koumoto, K., and Arai, S., J. Am. Ceram. Soc. 81, 1255 (1998).CrossRefGoogle Scholar
28.Tateyama, H., Noma, H., Adachi, Y., and Komatsu, M., Chem. Mater. 9, 766 (1997).CrossRefGoogle Scholar