Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T07:30:20.468Z Has data issue: false hasContentIssue false

Carbon Nanotube Based Molecular Electronic Devices

Published online by Cambridge University Press:  31 January 2011

Madhu Menon
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506–0055
Deepak Srivastava
Affiliation:
IT Modeling and Simulations Group at NAS, NASA Ames Research Center, MRJ, Mail Stop T27–A1, Moffett Field, California 94035–1000
Get access

Abstract

Complex three-point junctions of single-walled carbon nanotubes are proposed as building blocks of nanoscale electronic devices. Both T- and Y-junctions, made up of tubes with differing diameters and chiralities, are studied as prototypes. All the proposed complex junctions have been found to be local minima of the total energy on relaxation with a generalized tight-binding molecular dynamics scheme.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
2.Mintmire, J. W., Dunlap, B. I., and White, C. T., Phys. Rev. Lett. 68, 631 (1992).CrossRefGoogle Scholar
3.Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 46, 1804 (1992).CrossRefGoogle Scholar
4.Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).CrossRefGoogle Scholar
5.Dunlap, B. I., Phys. Rev. B 49, 5643 (1994).CrossRefGoogle Scholar
6.Menon, M., Richter, E., and Subbaswamy, K. R., J. Chem. Phys. 104, 5875 (1996).CrossRefGoogle Scholar
7.Hamada, N., Mater. Sci. Eng. B 19, 181 (1993).CrossRefGoogle Scholar
8.Chico, L., Crespi, V. H., Benedict, L. X., Louie, S. G., and Cohen, M. L., Phys. Rev. Lett. 76, 971 (1996).CrossRefGoogle Scholar
9.Charlier, J. C., Ebbesen, T. W., and Ph. Lambin, Phys. Rev. B 53, 11 108 (1996).CrossRefGoogle Scholar
10.Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 53, 2044 (1996).CrossRefGoogle Scholar
11.Iijima, S., Ichihashi, T., and Ando, Y., Nature (London) 356, 776 (1992).Google Scholar
12.Lambin, Ph., Fonseca, A., Vigneron, J., Nagy, J. B., and Lucas, A. A., Chem. Phys. Lett. 245, 85 (1995).CrossRefGoogle Scholar
13.Menon, M., Srivastava, D., and Saini, S., The Second NASA Device Modeling Workshop, NASA Ames, Moffet Field, California (1997).Google Scholar
14.Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G., and Dresselhaus, M. S., Science 275, 187 (1997).CrossRefGoogle Scholar
15.Menon, M., Subbaswamy, K. R., and Sawtarie, M., Phys. Rev. B 48, 8398 (1993).CrossRefGoogle Scholar
16.Raghavachari, K. and Binkley, J. S., J. Chem. Phys. 87, 2191 (1987).CrossRefGoogle Scholar
17.Menon, M. and Srivastava, D., Phys. Rev. Lett. 79, 4453 (1997).CrossRefGoogle Scholar
18.Blase, X., Benedict, L. X., Shirley, E. L., and Louie, S. G., Phys. Rev. Lett. 72, 1878 (1994).CrossRefGoogle Scholar
19.Ajayan, P., private communication.Google Scholar
20.Scuseria, G. E., Chem. Phys. Lett. 195, 534 (1992).CrossRefGoogle Scholar
21.Menon, M. and Srivastava, D., unpublished.Google Scholar
22.Charlier, J-C., De Vita, A., Blase, X., and Car, R., Science 275, 646 (1997).CrossRefGoogle Scholar
23.Zhou, D. and Seraphin, S., Chem. Phys. Lett. 238, 286 (1995).CrossRefGoogle Scholar