Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T08:32:22.809Z Has data issue: false hasContentIssue false

Carbon nanostructures formed on mesoporous silica by catalytic chemical vapor deposition of ethene

Published online by Cambridge University Press:  31 January 2011

Lingxia Zhang
Affiliation:
State Key Laboratory of High Performance and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
Jianlin Shi*
Affiliation:
State Key Laboratory of High Performance and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
Jiangtian Li
Affiliation:
State Key Laboratory of High Performance and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
Zile Hua
Affiliation:
State Key Laboratory of High Performance and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
Meiling Ruan
Affiliation:
State Key Laboratory of High Performance and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Three different strategies, wet impregnation, in situ reduction, and grafting with silane coupling agents, have been used to introduce CoNi nanoparticles with different existing forms into mesoporous silica. These composites were used as catalysts to grow nanostructured carbons by catalytic chemical vapor deposition using ethene. Carbon nanotubes (CNTs) with different inner diameters can grow out of mesoporous silica particles incorporated with CoNi nanoclusters. Many fewer CNTs could be found in the pore channels of the sample prepared by using silane coupling agents than in those of the sample synthesized via wet impregnation. No CNTs formed in the pore channels of the sample prepared by in situ reduction. After the removal of silica, different carbon nanostructures have been obtained in the pore channels. Ordered graphite carbon mesostructure was obtained from the sample prepared by in situ reduction. Highly dispersed metal catalysts inside mesopore channels are favorable for the formation of graphite carbons with ordered mesostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shi, J.L., Hua, Z.L.Zhang, L.X.: Nanocomposites from ordered mesoporous materials. J. Mater. Chem. 5, 795 2004CrossRefGoogle Scholar
2Yang, Y., Hu, Z., , Y.N.Chen, Y.: Growth of carbon nanotubes with metal-loading mesoporous molecular sieves catalysts. Mater. Chem. Phys. 82, 440 2003CrossRefGoogle Scholar
3Jia, J., Wang, Y., Tanabe, E., Shishido, T.Takehira, K.: Carbon fibers prepared by pyrolysis of methane over Ni/MCM-41 catalyst. Microporous Mesoporous Mater. 57, 283 2003CrossRefGoogle Scholar
4Lu, A.H., Schmidt, W., Tatar, S.D., Spliethoff, B., Popp, J.Kiefer, W.: Formation of amorphous carbon nanotubes on ordered mesoporous silica support. Carbon 43, 1811 2005CrossRefGoogle Scholar
5Ramesh, P., Kishi, N., Sugai, T.Shinohara, H.: High Yield synthesis of single-wall carbon nanotubes on MCM41 using catalytic chemical vapor deposition of Acetylene. J. Phys. Chem. B 110, 130 2006CrossRefGoogle ScholarPubMed
6Ciuparu, D., Chen, Y., Lim, S., Haller, G.L.Pfefferle, L.: Uniform-diameter singlewalled carbon nanotubes catalytically grown in cobalt-incorporated MCM-41. J. Phys. Chem. B 108, 503 2004CrossRefGoogle Scholar
7Chen, Y., Ciuparu, D., Lim, S., Haller, G.L.Pfefferle, L.D.: The effect of the cobalt loading on the growth of single wall carbon nanotubes by CO disproportionation on Co-MCM-41 catalysts. Carbon 44, 67 2006CrossRefGoogle Scholar
8Lim, S., Ciuparu, D., Pak, C., Dobek, F., Chen, Y.Harding, D.: Synthesis and characterization of highly ordered Co-MCM-41 for production of aligned single walled carbon nanotubes (SWNT). J. Phys. Chem. B 107, 11048 2003CrossRefGoogle Scholar
9Zhu, J., Yudasaka, M.Iijima, S.: A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem. Phys. Lett. 380, 496 2003CrossRefGoogle Scholar
10Ramesh, P., Okazaki, T., Tanoguchi, R., Kimura, J., Sugai, T.Sato, K.: Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica. J. Phys. Chem. B 109, 1141 2005CrossRefGoogle ScholarPubMed
11Zhang, W.H., Liang, C.H., Sun, H.J., Shen, Z.Q., Guan, Y.J.Ying, P.L.: Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition. Adv. Mater. 14, 1776 20023.0.CO;2-A>CrossRefGoogle Scholar
12Lu, A.H., Li, W.C., Salabas, E.L., Spliethoff, B.Schüth, F.: Low temperature catalytic pyrolysis for synthesis of high surface area nanostructured graphitic carbon. Chem. Mater. 18, 2086 2006CrossRefGoogle Scholar
13Kaneda, M., Tsubakiyama, T., Carlsson, A., Sakamoto, Y., Ohsuna, T.Terasaki, O.: Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. J. Phys. Chem. B 106, 1256 2002CrossRefGoogle Scholar
14Kim, C.H., Lee, D.K.Pinnavaia, T.J.: Graphitic mesostructured carbon prepared from aromatic precusors. Langmuir 20, 5157 2004CrossRefGoogle Scholar
15Vix-Guterl, C., Boulard, S., Parmentier, J., Werckmann, J.Patarin, J.: Formation of ordered mesoporous carbon material from a silica template by a one-step chemical vapour infiltration process. Chem. Lett. (Jpn.) 10, 1062 2002CrossRefGoogle Scholar
16Xia, Y.D.Makaya, R.: Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical-vapor-deposition method. Adv. Mater. 16, 1553 2004CrossRefGoogle Scholar
17Kim, T.W., Park, I.S.Ryoo, R.: A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. Angew. Chem., Int. Ed. Engl. 42, 4375 2003CrossRefGoogle ScholarPubMed
18Su, F., Zeng, J., Bao, X., Yu, Y., Lee, J.Y.Zhao, X.S.: Preparation and charaterization of highly orgered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater. 17, 3960 2005CrossRefGoogle Scholar
19Ryoo, R., Joo, S.H.Sun, S.: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743 1999CrossRefGoogle Scholar
20Jun, S., Joo, S.Ryoo, R.: Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712 2000CrossRefGoogle Scholar
21Joo, S., Choi, S., Oh, I., Kwak, J., Liu, Z.Terasaki, O.: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169 2001CrossRefGoogle ScholarPubMed
22Liang, C.D.Dai, S.: Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J. Am. Chem. Soc. 128, 5316 2006CrossRefGoogle ScholarPubMed
23Yang, H.F., Yan, Y., Liu, Y., Zhang, F.Q., Zhang, R.Y.Meng, Y.: A Simple melting inpregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches. J. Phys. Chem. B 108, 17320 2004CrossRefGoogle Scholar
24Zhao, D.Y., Huo, Q.S., Feng, J., Chemlka, B.F.Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024 1998CrossRefGoogle Scholar
25Zhang, W.H., Shi, J.L.Chen, H.R.: Synthesis and characterization of ZnS clusters confined in ordered mesoporous silica. Chem. Mater. 13, 648 2001CrossRefGoogle Scholar
26Zhang, L.X., Shi, J.L., Yu, J.Zhao, X.G.: A new in-situ reduction route for the synthesis of Pt nanoclusters in the channels of mesoporous silica SBA-15. Adv. Mater. 14, 1510 20023.0.CO;2-W>CrossRefGoogle Scholar
27Li, L., Shi, J.L., Zhang, L.X., Xiong, L.M.Yan, J.N.: A novel and simple in-situ reduction route for the synthesis of an ultra-thin metal nanocoating in the channels of mesoporous silica materials. Adv. Mater. 16, 1079 2004CrossRefGoogle Scholar
28Zheng, S., Gao, L., Zhang, Q.H., Zhang, W.P.Guo, J.K.: Preparation, characterization and photocatalytic properties of singly and doubly titania-modified mesoporous silicate MCM-41 by varying titanium precursors. J. Mater. Chem. 11, 578 2001CrossRefGoogle Scholar
29Hua, Z.L., Shi, J.L., Zhang, L.X., Ruan, M.L.Yan, J.N.: Formation of nanosized TiO2 in mesoporous silica thin films. Adv. Mater. 14, 830 20023.0.CO;2-W>CrossRefGoogle Scholar
30Kang, H., Jun, Y., Park, J., Lee, K.B.Cheon, J.: Synthesis of porous palladium superlattice nanobelts and nanowires. Chem. Mater. 12, 3530 2000CrossRefGoogle Scholar
31Lee, K.B., Lee, S.M.Cheon, J.: Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration. Adv. Mater. 13, 517 20013.0.CO;2-8>CrossRefGoogle Scholar
32Yamada, T., Zhou, H.S., Hiroishi, D., Tomita, M., Ueno, Y., Asai, K.Honma, T.: Platinum surface modification of SBA-15 byY-radiation treatment. Adv. Mater. 15, 511 2003CrossRefGoogle Scholar
33Crowley, T.A., Ziegler, K.J., Lyons, D.M., Erts, D., Olin, H., Morris, M.A.Holmes, J.D.: Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous silica template. Chem. Mater. 15, 3518 2003CrossRefGoogle Scholar