Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:41:10.180Z Has data issue: false hasContentIssue false

Can carbon-implanted silicon be applied as wide-bandgap emitter?

Published online by Cambridge University Press:  31 January 2011

D. J. Oostra
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindoven, The Netherlands
J. Politiek
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindoven, The Netherlands
C. W. T. Bulle-Lieuwma
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindoven, The Netherlands
D. E. W. Vandenhoudt
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindoven, The Netherlands
P. C. Zalm
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindoven, The Netherlands
Get access

Abstract

We examine the formation of Si1-xCx (x = 0.04–0.2) by means of CFy (y = 0,1,3) implantation in p-type Si, for application as a wide-bandgap emitter in a Si heterojunc-tion bipolar transistor. Upon implantation with 2.5 × 1016 CF+/cm2 at 45 keV, and subsequently with 2.5 × 1016 C+/cm2 at 30 keV, an amorphous top layer is formed. Annealing at temperatures up to 900 °C leads to a layer consisting of nanocrystalline material. High resolution transmission electron microscopy and secondary ion mass spectrometry show that a well-defined nanocrystalline/crystalline interface is created at an anneal temperature of 550 °C. At higher temperatures lattice defects start to develop. Preliminary attempts to dope the material via phosphorus or arsenic implantation indicate that temperatures of at least 900 °C are required to activate a fraction of the implanted dopants. This, however, adversely affects the adlayer/substrate interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.High Speed Semiconductor Devices, edited by Sze, S. M. (John Wiley / Sons, New York, 1990), p. 366.Google Scholar
2.Kuwagaki, M., Imai, K., and Amemiya, Y., Jpn. J. Appl. Phys. 28, L754 (1989).CrossRefGoogle Scholar
3.Kuwagaki, M., Imai, K., Ogino, T., and Amemiya, Y., Jpn. J. Appl. Phys. 28, L173 (1989).CrossRefGoogle Scholar
4.Sugii, T., Yamazaki, T., Arimoto, Y., Ito, T., Furumura, Y., Namura, I., Goto, H., and Tahara, A., Microelectr. Eng. 19, 335 (1992), and references therein.CrossRefGoogle Scholar
5.Theunissen, M. J. J., Martens, M. C., Clegg, J. B., Vandenhoudt, D. E. W., and Zalm, P. C., J. Electrochem. Soc. 142, 226 (1995).CrossRefGoogle Scholar
6.Reeson, K. J., Hemment, P. L. F., Stoemenos, J., Davis, J. R., and Celler, G. K. A., Inst. Phys. Conf. Ser. No. 87, 427 (1987), in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by J.C. Sturm, C. K. Chen, L. Pfeiffer, and P. L. F. Hemment (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 473.Google Scholar
7.Martin, P., Daunin, B., Dupuy, M., Ermolieff, A., Olivier, M., Papon, A. M., and Rolland, G., J. Appl. Phys. 67, 2908 (1990).CrossRefGoogle Scholar
8.Ziegler, J. F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
9.Ligthart, H. J. and Politiek, J., Philips Tech. Rev. 43, 185 (1986).Google Scholar
10.Wilson, R. G., Stevie, F. A., and Magee, C. W., Secondary Ion Mass Spectrometry (John Wiley / Sons, New York, 1989).Google Scholar
11.van der Pauw, L. J., Philips Res. Rep. 13, 1 (1958).Google Scholar
12.Stolk, P. A., Eaglesham, D. J., Gossmann, H-J., and Poate, J. M., Appl. Phys. Lett. 66, 1370 (1995).CrossRefGoogle Scholar
13.Kato, J., J. Electrochem. Soc. 137, 1918 (1990).CrossRefGoogle Scholar
14.Seibt, M., Imschweiler, J., and Hefner, H-A., in Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited Ashok, S., Chevallier, J., Sumino, K., and Weber, E. (Mater. Res. Soc. Symp. Proc. 262, Pittsburgh, PA, 1992), p. 1103.Google Scholar
15.Mantl, S., Mater. Sci. Rep. 8, 1 (1992).CrossRefGoogle Scholar
16.Dekempeneer, E. H. A., Ottenheim, J. J. M., Vandenhoudt, D. E. W., Bulle-Lieuwma, C. W. T., and Lathouwers, E. G. C., Nucl. Instrum. Methods B 55, 769 (1991).CrossRefGoogle Scholar