Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T20:59:04.672Z Has data issue: false hasContentIssue false

Bunching of Surface Steps and Facet Formation on Analumina Surface

Published online by Cambridge University Press:  31 January 2011

N. Ravishankar
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota,421 Washington Ave. S.E., Minneapolis, Minnesota 55455
C. Barry Carter*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota,421 Washington Ave. S.E., Minneapolis, Minnesota 55455
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The behavior of steps on the basal surface of alumina under conditions of evaporativemass transport has been investigated. Steps on a clean surface of alumina tend to be uniformly spaced indicating a repulsive interaction between the steps. The presence of foreign particles causes step bunching that leads to the formation of a new facet. The lower energy of the macrofacet may provide a driving force for the bunching process.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Susnitzky, D.M., Simpson, Y.M. Kouh, Cooman, B.C. De, and Carter, C.B., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Chen, Y., Kingery, W.D., and Stokes, R.J. (Mater. Res. Soc. Symp. Proc. 60, Pittsburgh, PA, 1986), pp. 219226.Google Scholar
Van, L. Pham, Kurnosikov, O., and Cousty, J., Surf. Sci. 411, 263 (1998).Google Scholar
Morrissey, K.J. and Carter, C.B., in Advanced Photon and Particle Techniques for the Characterization of Defects in Solids, edited by Roberto, J.B., Carpenter, R.W., and Wittels, N.C. (Mater. Res. Soc. Symp. Proc. 41, Pittsburgh, PA, 1985), pp. 137142.Google Scholar
Kurnosikov, O., Van, L. Pham, and Cousty, J., Surf. Sci. 459, 256 (2000).CrossRefGoogle Scholar
Heffelfinger, J.R., Bench, M.W., and Carter, C.B., Surf. Sci. 370, L168 (1997).CrossRefGoogle Scholar
Heffelfinger, J.R. and Carter, C.B., Surf. Sci. 39, 188 (1997).CrossRefGoogle Scholar
Heffelfinger, J.R., Bench, M.W., and Carter, C.B., Surf. Sci. Lett. 343, 1161 (1995).CrossRefGoogle Scholar
Tietz, L., Summerfelt, S., English, G., and Carter, C., Appl. Phys. Lett. 55, 1202 (1989).CrossRefGoogle Scholar
Norton, M.G. and Carter, C.B., Growth of YBa2Cu3O7-δ Thin films—Nucleation, Heteroepitaxy and Interfaces, Scanning Microscopy, 6 (1992).Google Scholar
Norton, M.G. and Carter, C.B., Nucleation and Heteroepitaxy of YBa2Cu3O7-δ Thin Films, presented at the ICEM 12, Seattle, WA (1990), Vol. 4, pp. 88–89.Google Scholar
King, S.L. and Carter, C.B., in Mechanisms of Thin Film Evolution, edited by Yalisove, S.M., Thompson, C.V., and Englesham, D.J., (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), pp. 6570.Google Scholar
Ramamurthy, S., Schmalzried, H., and Carter, C.B., Philos. Mag. A 80(11) (2000).CrossRefGoogle Scholar
Stranski, I.N., Z. Phys. Chem. 136, 259 (1928).CrossRefGoogle Scholar
Burton, W.K., Cabrera, N., and Frank, F.C., Philos. Trans. R. Soc. A243, 299 (1951).Google Scholar
Hirth, J.P. and Pound, G.M., Evaporation and Condensation (Pergamon Press, London, United Kingdom, 1963).Google Scholar
Cabrera, N. and Vermilyea, D.A., The Growth of Crystals from Solution, presented at the International Conference on Crystal Growth, Cooperstown, New York (1958), pp. 393410.Google Scholar
Keller, K.W., Metall. Trans. 22A, 1299 (1991).CrossRefGoogle Scholar
Munir, Z.A., Metall. Trans. 22A, 1305 (1991).CrossRefGoogle Scholar
Frank, F.C., On the Kinematic Theory of Crystal Growth and Dissolution Process, presented at the International Conference on Crystal Growth, Cooperstown, New York (1958).Google Scholar
Kandel, D. and Weeks, J.D., Phys. Rev. B 52, 2154 (1995).CrossRefGoogle Scholar
Notzel, R., Eissler, D., Hohenstein, M., and Ploog, K., J. Appl. Phys. 74, 431 (1993).CrossRefGoogle Scholar
Kimoto, T., Itoh, A., and Matsunami, H., Appl. Phys. Lett. 66, 3645 (1995).CrossRefGoogle Scholar
Ohtani, N., Katsuno, M., Takahashi, J., Yashiro, H., and Kanaya, M., Phys. Rev. B. 59, 4592 (1999).CrossRefGoogle Scholar
Ohtani, N., Katsuno, M., Aigo, T., Fujimoto, T., Tsuge, H., Yashiro, H., and Kanaya, M., J. Cryst. Growth 210, 613 (2000).CrossRefGoogle Scholar
Nakamura, S., Kimoto, T., Matsunami, H., Tanaka, S., Teraguchi, N., and Suzuki, A., Appl. Phys. Lett. 76, 3412 (2000).CrossRefGoogle Scholar
Hata, K., Kawazu, A., Okano, T., Ueda, T., and Akiyama, M., Appl. Phys. Lett. 63, 1625 (1993).CrossRefGoogle Scholar
Mullins, W.W., Philos. Mag. 6, 1313 (1961).CrossRefGoogle Scholar
Susnitzky, D.W. and Carter, C.B., J. Am. Ceram. Soc. 75, 2463 (1992).CrossRefGoogle Scholar
Priest, H., Priest, G., and Gazza, G., J. Am. Ceram. Soc. 60, 81 (1977).CrossRefGoogle Scholar
Mitomo, M., J. Mater. Sci. 11, 1103 (1976).CrossRefGoogle Scholar
Greskovich, C. and Prochazka, S., J. Am. Ceram. Soc. 64, C96 (1981).Google Scholar
Baik, S. and Raj, R., J. Am. Ceram. Soc. 68, C124 (1985).Google Scholar
Terwilliger, G. and Lange, F., J. Mater. Sci. 10, 1169 (1975).CrossRefGoogle Scholar
Peleg, M. and Alcock, C.B., High Temp. Sci. 6, 52 (1974).Google Scholar
Mallamaci, M.P. and Carter, C.B., J. Am. Ceram. Soc. 82, 33 (1999).CrossRefGoogle Scholar
Schwoebel, R. and Shipsey, E., J. Appl. Phys. 37, 3682 (1966).CrossRefGoogle Scholar
Powers, J. and Glaeser, A., J. Am. Ceram. Soc. 75, 2547 (1992).CrossRefGoogle Scholar
Mukhopadhyay, S., Jardine, A., Blakely, J., and Baik, S., J. Am. Ceram. Soc. 71, 358 (1988).CrossRefGoogle Scholar
Kaplan, W., Mullejans, H., Ruhle, M., Rodel, J., and Claussen, N., J. Am. Ceram. Soc. 78, 2841 (1995).CrossRefGoogle Scholar
Baik, S. and White, C.L., J. Am. Ceram. Soc. 70, 682 (1987).CrossRefGoogle Scholar
Baik, S., Fowler, D.E., Blakely, J.M., and Raj, R., J. Am. Ceram. Soc. 68, 281 (1985).CrossRefGoogle Scholar
Mallamaci, M.P., Sartain, K.B. and Carter, C.B., Philos. Mag. A 77, 561 (1998).CrossRefGoogle Scholar
Williams, E.D., Surf. Sci. 299/300, 502 (1994).CrossRefGoogle Scholar
Ravishankar, N. and Carter, C.B., Microsc. Microanal. 7(Suppl 2) (2001).CrossRefGoogle Scholar
Powell-Dogan, C.A. and Heuer, A.H., J. Am. Ceram. Soc. 73, 3670 (1990).CrossRefGoogle Scholar
Choi, J-H., Kim, D-Y., Hockey, B.J., Wiederhorn, S.M., Handwerker, C.A., Blendell, J.E., Carter, W.C., and Roosen, A.R., Am. Ceram. Soc. 81, 62 (1997).CrossRefGoogle Scholar
Kitayama, M., Narushima, T., and Glaeser, A.M., J. Am. Ceram. Soc. 83, 2572 (2000).CrossRefGoogle Scholar