Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T15:39:02.488Z Has data issue: false hasContentIssue false

Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing

Published online by Cambridge University Press:  01 July 2006

C.X. Huang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Y.L. Gao
Affiliation:
Central Iron and Steel Research Institute, Beijing 100081, People's Republic of China
G. Yang
Affiliation:
Central Iron and Steel Research Institute, Beijing 100081, People's Republic of China
S.D. Wu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
G.Y. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
S.X. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Bulk fully nanocrystalline grain structures were successfully obtained in ultralow carbon stainless steel by means of equal channel angular pressing at room temperature. Transmission electron microscopy (TEM) and high-resolution TEM investigations indicated that two types of nanostructures were formed: nanocrystalline strain-induced martensite (body-centered cubic structure) with a mean grain size of 74 nm and nanocrystalline austenite (face-centered cubic structure) with a size of 31 nm characterized by dense deformation twins. The results about the formation of fully nanocrystalline grain structures in stainless steel suggested that a low stacking fault energy is exceptionally profitable for producing nanocrystalline materials by equal channel angular pressing.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.McFadden, S.H., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P., Mukherjee, A.K.: Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684 (1999).CrossRefGoogle Scholar
2.Ebrahimi, F., Ahmed, Z., Li, H.: Effect of stacking fault energy on plastic deformation of nanocrystalline face-centered cubic metals. Appl. Phys. Lett. 85, 3749 (2004).Google Scholar
3.Chen, X.H., Lu, J., Lu, L., Lu, K.: Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scripta Mater. 52, 1039 (2005).CrossRefGoogle Scholar
4.Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
5.Lu, K., Lu, J.: Nanotructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 375, 38 (2004).CrossRefGoogle Scholar
6.Komura, S., Horita, Z., Nemoto, M., Langdon, T.G.: Influence of stacking fault energy on microstructural development in equal-channel angular pressing. J. Mater. Res. 14, 4044 (1999).CrossRefGoogle Scholar
7.Iwahashi, Y., Horita, Z., Nemoto, M., Langdon, T.G.: Factors influencing the equilibrium grain size in equal-channel angular pressing: Role of Mg additions to aluminum. Metall. Mater. Trans. 29A, 2503 (1998).CrossRefGoogle Scholar
8.Han, B.Q., Lavernia, E.J., Mohamed, F.A.: Mechanical properties of iron processed by severe plastic deformation. Metall. Mater. Trans. A 34, 71 (2003).CrossRefGoogle Scholar
9.Fukuda, Y., Oh-ishi, K., Horita, Z., Langdon, T.G.: Processing of a low-carbon steel by equal-channel angular pressing. Acta Mater. 50, 1359 (2002).CrossRefGoogle Scholar
10.Stolyarov, V.V., Zhu, Y.T., Alexandrov, T.V., Lowe, T.C., Valiev, R.Z.: Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A 299, 59 (2001).CrossRefGoogle Scholar
11.Liu, T., Zhang, W., Wu, S.D., Jiang, C.B., Li, S.X., Xu, Y.B.: Mechanical properties of a two-phase alloy Mg–8%Li–1%Al processed by equal channel angular pressing. Mater. Sci. Eng. A 360, 345 (2003).CrossRefGoogle Scholar
12.Semenova, I.P., Raab, G.I., Saitova, L.R., Valiev, R.Z.: The effect of equal-channel angular pressing on the structure and mechanical behavior of Ti-6Al-4V alloy. Mater. Sci. Eng. A 387, 805 (2004).Google Scholar
13.Wei, Q., Ramesh, K.T., Ma, E., Kesckes, L.J., Dowding, R.J., Kazykhanov, V.U., Valiev, R.Z.: Plastic flow localization in bulk tungsten with ultrafine microstructure. Appl. Phys. Lett. 86, 101907 (2005).CrossRefGoogle Scholar
14.Zhang, H.W., Hei, Z.K., Liu, G., Lu, J., Lu, K.: Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871 (2003).CrossRefGoogle Scholar
15.Yapici, G.G., Karaman, I., Luo, Z.P., Maier, H.J., Chumlyakov, Y.I.: Microstructural refinement and deformation twinning during severe plastic deformation of 316L stainless steel at high temperatures. J. Mater. Res. 19, 2268 (2004).CrossRefGoogle Scholar
16.Murr, L.E.: Interfacial Phenomena in Metals and Alloys (Techbooks, Herndan, VA, 1975), p. 145.Google Scholar
17.Shin, H.C., Ha, T.K., Park, W.J., Chang, Y.W.: Deformation-induced martensite transformation under various deformation modes. Key Eng. Mater. 233, 667 (2003).Google Scholar
18.Tao, N.R., Wu, X.L., Sui, M.L., Lu, J., Lu, K.: Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy. J. Mater. Res. 19, 1623 (2004).CrossRefGoogle Scholar
19.Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., Gleiter, H.: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1, 1 (2002).Google Scholar
20.Chen, M.W., Ma, E., Hemker, K.J., Wang, Y.M., Cheng, X.: Deformation twinning in nanocryatalline aluminum. Science 300, 1275 (2003).CrossRefGoogle ScholarPubMed
21.Liao, X.Z., Zhao, Y.H., Srinivasan, S.G., Zhu, Y.T., Valiev, R.Z., Gunderov, D.V.: Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl. Phys. Lett. 84, 592 (2004).CrossRefGoogle Scholar
22.Huang, C.X., Wu, S.D., Zhang, Z.F., Li, G.Y., Li, S.X.: Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 54, 655 (2006).CrossRefGoogle Scholar
23.Liu, Q., Jensen, D.J., Hansen, N.: Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Mater. 46, 5819 (1998).CrossRefGoogle Scholar
24.Hughens, D.A., Hansen, N.: High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 45, 3871 (1997).CrossRefGoogle Scholar
25.Iwahashi, Y., Horita, Z., Nemoto, M., Langdon, T.G.: An investigation of microstructural evolution during equal-channel angular pressing. Acta Mater. 45, 4733 (1997).Google Scholar
26.Wang, Y.M., Chen, M.W., Sheng, H.W., Ma, E.: Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling. J. Mater. Res. 17, 3004 (2002).CrossRefGoogle Scholar
27.Tao, N.R., Wang, Z.B., Tong, W.P., Sui, M.L., Lu, J., Lu, K.: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50, 4603 (2002).CrossRefGoogle Scholar
28.Humphreys, F.J., Hatherly, M.: Recrystallization and Related Annealing Phenomena (Pergamon Press, Oxford, UK, 1996), p. 127.Google Scholar