Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T21:19:34.221Z Has data issue: false hasContentIssue false

Branching effect and morphology control in electrospun PbZr0.52Ti0.48O3 nanofibers

Published online by Cambridge University Press:  27 August 2014

Arsen Gevorkyan
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
Gennady E. Shter
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
Yuval Shmueli
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
Ahuva Buk
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
Reut Meir
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
Gideon S. Grader*
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Utilization of PbZrxTi1−xO3 (PZT) nanofibers as functional flexible fillers in sensing and energy harvesting applications requires uniform, submicrometer fibers with a large aspect ratio. Previous studies concentrated on the rheological effects on the fiber's diameter and morphology. However, reports on the effect of electric field on these fiber properties are still scarce. In this paper, the effects of surface charge and electric field on the fiber branching are decoupled. We show unequivocally that the external electric field governs this phenomenon. Low viscosity (∼0.12 Pa s) PZT sols yielded a sharp step-like transition from a large to a small diameter regime at electric fields above 0.8 kV/cm. On the other hand, high viscosity sols (∼0.74 Pa s) yielded a transition from a single to a bimodal distribution at the same electric field, due to the branching effect. An ability to obtain a single or bimodal diameter distribution in the range of 100–800 nm was demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dong, Z., Scott, K.J., and Wu, Y.: Electrospinning materials for energy related applications and devices. J. Power Sources 196, 48864904 (2011).CrossRefGoogle Scholar
Anton, R.S. and Sodano, A.H.: A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater. Struct. 16, R1R21 (2007).Google Scholar
Chang, J., Dommer, M., Chang, C., and Lin, L.: Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1, 356371 (2012).Google Scholar
Wang, Y. and Santiago-Aviles, J.: Carbon and PZT Nanofibers through Electrospinning (VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG, Saarbrucken, Germany, 2010).Google Scholar
Jaffe, B., Cook, R.W., and Jaffe, H.: Piezoelectric Ceramics (Academic Press, New York, NY, 1971).Google Scholar
Chen, X., Xu, S., Yao, N., and Shi, Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 21332137 (2010).CrossRefGoogle ScholarPubMed
Xu, S., Shi, Y., and Kim, S.: Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 17, 44974501 (2006).Google Scholar
Angammana, C.J. and Jayaram, S.H.: The effects of electric field on the multijet electrospinning process and fiber morphology. IEEE Trans. Ind. Appl. 47, 10281035 (2011).Google Scholar
Chowdhury, M. and Stylios, G.: Effect of experimental parameters on the morphology of electrospun nylon 6 fibres. Int. J. Basic Appl. Sci. 10, 116131 (2010).Google Scholar
Ramakrishna, S., Fujihara, K., Teo, W., Lim, T., and Ma, Z.: An Introduction to Electrospinning and Nanofibers (World Scientific Publishing Co. Pte. Ltd., Singapore, 2005).CrossRefGoogle Scholar
Alkoy Mensur, E., Dagdeviren, C., and Papila, M.: Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3-3 PZT/polymer composite. J. Am. Ceram. Soc. 92, 25662570 (2009).Google Scholar
Hossain, M. and Kim, A.: The effect of acetic acid on morphology of PZT nanofibers fabricated by electrospinning. Mater. Lett. 63, 789792 (2009).CrossRefGoogle Scholar
Lee Yong, D., Park, J., Lee, K., Kang, J., Oh, Y., and Cho, N.: Synthesis and characterization of Pb(Zr0.5Ti0.5)O3 nanofibers. Curr. Appl. Phys. 11, 11391143 (2011).Google Scholar
Yarin, L.A., Kataphinan, W., and Reneker, H.D.: Branching in electrospinning of nanofibers. J. Appl. Phys. 98, 064501 (2005).Google Scholar
Zargarian, S.S. and Haddadi-Asl, V.: A nanofibrous composite scaffold of PCL/hydroxyapatite-chitosan/PVA prepared by electrospinning. Iran. Polym. J. 19, 457468 (2010).Google Scholar
Koombhongse, S., Liu, W., and Reneker, H.D.: Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. 39, 25982606 (2001).Google Scholar
Deitzel, J.M., Kleinmeyer, J.D., Hirvonen, J.K., and Beck Tan, N.C.: Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42, 81638170 (2001).Google Scholar
Dharmaraj, N., Kim, C., and Kim, H.: Pb (Zr0.5Ti0.5)O3 nanofibres by electrospinning. Mater. Lett. 59, 30853089 (2005).Google Scholar
Fan, M., Hui, W., Li, Z., Shen, Z., Li, H., Jiang, A., Chen, Y., and Liu, R.: Fabrication and piezoresponse of electrospun ultra-fine Pb(Zr0.3Ti0.7)O3 nanofibers. Microelectron. Eng. 98, 371373 (2012).Google Scholar
Khajelakzay, M. and Taheri-Nassaj, E.: Synthesis and characterization of Pb(Zr0.52TI0.48)O3 nanofibers by electrospinning, and dielectric properties of PZT-resin composite. Mater. Lett. 75, 6164 (2012).Google Scholar
Etin, A., Shter, G., Gelman, V., and Grader, G.: Uniformity, composition, and surface tension in solution deposited PbZrxTi1−xO3 films. J. Mater. Res. 22, 103112 (2007).Google Scholar
Fuks, D., Shter, G.E., Mann-Lahav, M., and Grader, G.S.: Crack‐free drying of ceramic foams by the use of viscous cosolvents. J. Am. Ceram. Soc. 93, 36323636 (2010).CrossRefGoogle Scholar
Ki, C.S., Baek, D.H., Gang, K.D., Lee, K.H., Um, I.C., and Park, Y.H.: Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer 46, 50945102 (2005).Google Scholar
Demir, M.M., Yilgor, I., and Erman, B.: Electrospinning of polyurethane fibers. Polymer 43(11), 33033309 (2002).Google Scholar
Henriques, C., Vidinha, R., Botequim, D., Borges, J.P., and Silva, J.A.M.C.: A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. J. Nanosci. Nanotechnol. 8, 111 (2008).Google Scholar
Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., and Chu, B.: Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43, 44034412 (2002).CrossRefGoogle Scholar
Zhao, Z., Li, J., Yuan, X., Li, X., Zhang, Y., and Sheng, J.: Preparation and properties of electrospun poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. 97, 466474 (2005).Google Scholar
Deitzel, J.M., Kleinmeyer, J., Harris, D., and Beck Tan, N.C.: The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42, 261272 (2001).Google Scholar
Thompson, C., Chase, G., Yarin, A., and Reneker, D.: Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48, 69136922 (2007).Google Scholar
Wu, X-F., Salkovskiy, Y., and Dzenis, Y.A.: Modeling of solvent evaporation from polymer jets in electrospinning. Appl. Phys. Lett. 98, 223108 (2011).Google Scholar
Etin, A., Shter, G.E., Grader, G.S., and Reisner, G.M.: Interrelation of ferroelectricity, morphology, and thickness in sol–gel‐derived PbZrxTi1−xO3 films. J. Am. Ceram. Soc. 90, 7783 (2007).Google Scholar
Zhang, C., Yuan, X., Wu, L., Han, Y., and Sheng, J.: Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41, 423432 (2005).CrossRefGoogle Scholar
Frenot, A. and Chronakis, S.I.: Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8, 6475 (2003).Google Scholar
Zhou, Z., Wu, X., Gao, X., Jiang, L., Zhao, Y., and Fong, H.: Parameter dependence of conic angle of nanofibres during electrospinning. J. Phys. D: Appl. Phys. 44, 435401 (2011).Google Scholar
Reneker, D.H. and Yarin, A.L.: Electrospinning jets and polymer nanofibers. Polymer 49, 23872425 (2008).Google Scholar