Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T11:05:31.021Z Has data issue: false hasContentIssue false

Boron nitride nanotube reinforced titanium metal matrix composites with excellent high-temperature performance

Published online by Cambridge University Press:  29 August 2017

Md Mahedi Hasan Bhuiyan
Affiliation:
Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
Jiangting Wang
Affiliation:
Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
Lu Hua Li
Affiliation:
Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
Peter Hodgson
Affiliation:
Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
Arvind Agarwal
Affiliation:
Advanced Materials Engineering Research Institute (AMERI), Florida International University, Miami, Florida 33174, USA
Ma Qian
Affiliation:
Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
Ying Chen*
Affiliation:
Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Boron nitride nanotube (BNNT) reinforced titanium (Ti) matrix composites were prepared using the cold press-and-sinter method. In the composite sintered at 800 °C for 1 h, BNNTs were homogeneously distributed in the Ti matrix and restricted the growth of Ti grains. The compressive strength of the as-sintered Ti–4 vol% BNNT composite achieved 985 MPa at room temperature versus 678 MPa without the BNNT reinforcements. The highest compressive strength of 277 MPa at 500 °C was obtained from the Ti–5 vol% BNNT composite. When sintered at 1000 °C, chemical reactions occurred between Ti and BNNTs leading to the formation of the interfacial TiB phase, which serves as a strong binding between BNNTs and the Ti matrix. The reinforcements were attributed by a mixture of BNNTs and TiB after sintering at 1000 °C for 3 h. However, no BNNT was observed in the microstructure after sintering at 1100 °C for 3 h due to complete transformation into TiB whiskers.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Yang-T. Cheng

References

REFERENCES

Lütjering, G. and Williams, J.C.: Titanium, 2nd ed. (Springer, Berlin, Germany, 2007).Google Scholar
A.S.M.I.H. Committee: ASM Handbook: Vol. 02-Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International, Materials Park, Ohio, 1990).Google Scholar
Froes, F.H. and Eylon, D.: Powder metallurgy of titanium alloys. Int. Mater. Rev. 35, 162184 (1990).Google Scholar
Froes, F.H., Mashl, S.J., Hebeisen, J.C., Moxson, V.S., and Duz, V.A.: The technologies of titanium powder metallurgy. JOM 56, 4648 (2004).CrossRefGoogle Scholar
Ward-Close, C.M., Winstone, M.R., and Partridge, P.G.: Developments in the processing of titanium alloy metal matrix composites. Mater. Des. 15, 6777 (1994).CrossRefGoogle Scholar
Williams, J.: Thermo-mechanical processing of high-performance Ti alloys: Recent progress and future needs. J. Mater. Process. Technol. 117, 370373 (2001).Google Scholar
Williams, J.C.: Alternate materials choices—Some challenges to the increased use of Ti alloys. Mater. Sci. Eng., A 263, 107111 (1999).Google Scholar
Rawal, S.: Metal-matrix composites for space applications. JOM 53, 1417 (2001).Google Scholar
Mason, R.B., Gintert, L.A., Singleton, M.F., and Skelton, D.: Composite for military equipment. Adv. Mater. Processes 162, 3739 (2004).Google Scholar
Montgomery, J., Wells, M.H., Roopchand, B., and Ogilvy, J.: Low-cost titanium armors for combat vehicles. JOM 49, 4547 (1997).Google Scholar
Saito, T.: The automotive application of discontinuously reinforced TiB–Ti composites. JOM 56, 3336 (2004).Google Scholar
Saito, T., Takamiya, H., and Furuta, T.: Thermomechanical properties of P/M β titanium metal matrix composite. Mater. Sci. Eng., A 243, 273278 (1998).Google Scholar
Bakshi, S., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 4164 (2010).CrossRefGoogle Scholar
Kondoh, K., Threrujirapapong, T., Umeda, J., and Fugetsu, B.: High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion. Compos. Sci. Technol. 72, 12911297 (2012).Google Scholar
Xue, F., Jiehe, S., Yan, F., and Wei, C.: Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites. Mater. Sci. Eng., A 527, 15861589 (2010).Google Scholar
Li, J., Wang, L., Qin, J., Chen, Y., Lu, W., and Zhang, D.: Thermal stability of in situ synthesized (TiB + La2O3)/Ti composite. Mater. Sci. Eng., A 528, 48834887 (2011).Google Scholar
Vreeling, J.A., Ocelík, V., and De Hosson, J.T.M.: Ti–6Al–4V strengthened by laser melt injection of WCp particles. Acta Mater. 50, 49134924 (2002).CrossRefGoogle Scholar
Luo, S.D., Li, Q., Tian, J., Wang, C., Yan, M., Schaffer, G.B., and Qian, M.: Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scr. Mater. 69, 2932 (2013).CrossRefGoogle Scholar
Ishigami, M., Aloni, S., and Zettl, A.: Properties of boron nitride nanotubes. In Scanning Tunneling Microscopy/Spectroscopy and Related Techniques: 12th International Conference, Kemerink, P.M.K.a.M., ed. (AIP Conference Proceedings American Institiute of Physics, Eindhoven, the Netherlands, 2003); pp. 9499.Google Scholar
Chopra, N.G. and Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297300 (1998).Google Scholar
Suryavanshi, A.P., Yu, M-F., Wen, J., Tang, C., and Bando, Y.: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 25272529 (2004).Google Scholar
Shen, H.: Thermal-conductivity and tensile-properties of BN, SiC and Ge nanotubes. Comput. Mater. Sci. 47, 220224 (2009).Google Scholar
Chen, Y., Zou, J., Campbell, S.J., and Caer, G.L.: Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 84, 24302432 (2004).Google Scholar
Golberg, D., Bando, Y., Tang, C., and Zni, C.: Boron nitride nanotubes. Adv. Mater. 19, 24132432 (2007).CrossRefGoogle Scholar
Zhi, C., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H., and Golberg, D.: Characteristics of boron nitride nanotube–polyaniline composites. Angew. Chem., Int. Ed. 44, 79297932 (2005).Google Scholar
Zhi, C., Bando, Y., Tang, C., Honda, S., Kuwara, H., and Golberg, D.: Boron nitride nanotubes/polystyrene composites. J. Mater. Res. 21, 27942800 (2006).Google Scholar
Ravichandran, J., Manoj, A.G., Liu, J., Manna, I., and Carroll, D.L.: A novel polymer nanotube composite for photovoltaic packaging applications. Nanotechnology 19, 085712 (2008).CrossRefGoogle ScholarPubMed
Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., and Golberg, D.: Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C 114, 43404344 (2010).Google Scholar
Zhi, C., Bando, Y., Terao, T., Tang, C., Kuwahara, H., and Golberg, D.: Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Funct. Mater. 19, 18571862 (2009).CrossRefGoogle Scholar
Zhi, C.Y., Bando, Y., Wang, W.L., Tang, C.C., Kuwahara, H., and Golberg, D.: Mechanical and thermal properties of polymethyl methacrylate-BN nanotube composites. J. Nanomater. 2008, 642036 (2008).Google Scholar
Li, L., Chen, Y., and Stachurski, Z.H.: Boron nitride nanotube reinforced polyurethane composites. Prog. Nat. Sci. 23, 170173 (2013).Google Scholar
Bansal, N.P., Hurst, J.B., and Choi, S.R.: Boron nitride nanotubes-reinforced glass composites. J. Am. Ceram. Soc. 89, 388390 (2006).Google Scholar
Choi, S.R., Bansal, N.P., and Garg, A.: Mechanical and microstructural characterization of boron nitride nanotubes-reinforced SOFC seal glass composite. Mater. Sci. Eng., A 460–461, 509515 (2007).CrossRefGoogle Scholar
Lahiri, D., Hadjikhani, A., Zhang, C., Xing, T., Li, L.H., Chen, Y., and Agarwal, A.: Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior. Mater. Sci. Eng., A 574, 149156 (2013).Google Scholar
Singhal, S.K., Srivastava, A.K., Pasricha, R., and Mathur, R.B.: Fabrication of Al-matrix composites reinforced with amino functionalized boron nitride nanotubes. J. Nanosci. Nanotechnol. 11, 51795186 (2011).Google Scholar
Yamaguchi, M., Pakdel, A., Zhi, C., Bando, Y., Tang, D.M., Faerstein, K., Shtansky, D., and Golberg, D.: Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons. Nanoscale Res. Lett. 8, 3 (2013).Google Scholar
Yamaguchi, M., Bernhardt, J., Faerstein, K., Shtansky, D., Bando, Y., Golovin, I.S., Sinning, H-R., and Golberg, D.: Fabrication and characteristics of melt-spun Al ribbons reinforced with nano/micro-BN phases. Acta Mater. 61, 76047615 (2013).Google Scholar
Yamaguchi, M., Meng, F., Firestein, K., Tsuchiya, K., and Golberg, D.: Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Mater. Sci. Eng., A 604, 917 (2014).Google Scholar
Patel, R.B., Liu, J., Eng, J., and Iqbal, Z.: One-step CVD synthesis of a boron nitride nanotube–iron composite. J. Mater. Res. 26, 1332 (2011).Google Scholar
Lahiri, D., Singh, V., Li, L.H., Xing, T., Seal, S., Chen, Y., and Agarwal, A.: Insight into reactions and interface between boron nitride nanotube and aluminum. J. Mater. Res. 27, 27602770 (2012).Google Scholar
Bhuiyan, M.M.H., Li, L.H., Wang, J., Hodgson, P., and Chen, Y.: Interfacial reactions between titanium and boron nitride nanotubes. Scr. Mater. 127, 108112 (2017).Google Scholar
Chen, Y., Fitz Gerald, J., Williams, J.S., and Bulcock, S.: Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 299, 260264 (1999).Google Scholar
Lahiri, D., Rouzand, F., Richard, T., Keshri, A.K., Bakshi, S.R., Kos, L., and Agarwal, A.: Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro . Acta Biomater. 6, 35243533 (2010).Google Scholar
Feng, H.B., Jia, D.C., Zhou, Y., and Huo, J.: Microstructural characterisation of in situ TiB/Ti matrix composites prepared by mechanical alloying and hot pressing. Mater. Sci. Technol. 20, 12051210 (2004).Google Scholar
Feng, H., Zhou, Y., Jia, D., and Meng, Q.: Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Compos. Sci. Technol. 64, 24952500 (2004).Google Scholar
Tjong, S.C. and Mai, Y-W.: Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68, 583601 (2008).Google Scholar
Feng, X., Sui, J., and Cai, W.: Processing of multi-walled carbon nanotube-reinforced TiNi composites by hot pressed sintering. J. Compos. Mater. 45, 15531557 (2011).Google Scholar