Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T16:41:21.991Z Has data issue: false hasContentIssue false

Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis

Published online by Cambridge University Press:  08 April 2016

Yan Yan
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Tianrui Chen
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Yongcun Zou
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Yu Wang*
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Sn doped TiO2 (SDT) hierarchical nanorods have been synthesized by using nanocystalline cellulose nanorod as biotemplate. Experimental results show that the phase transition from anatase to rutile can be realized by increasing the calcination temperature. In contrast to enhancing the calcination temperature, the Sn doping can more effectively improve the phase transition with remaining morphology due to the similar ionic radius and charge between Sn and Ti. The crystallinity, electronic structure, interface charge transfer process, and the specific surface area have a strong effect on the photocatalytic activity of the hierarchical TiO2 and SDT nanorods. Furthermore, the photocatalytic activity of SDT hierarchical nanorods can be obviously improved by loaded Au nanoparticles on the surface due to the local surface plasmon resonance effect of Au and formation of a Schottky barrier at the Au/TiO2 interface, which is in favor of the effective separation of photoinduced carriers and the formation of superoxide anion radicals.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W.: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114, 99199986 (2014).Google Scholar
Chen, X.B., Liu, L., and Huang, F.Q.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 18611885 (2015).CrossRefGoogle ScholarPubMed
Kapilashrami, M., Zhang, Y., Liu, Y.S., Hagfeldt, A., and Guo, J.H.: Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114, 96629707 (2014).Google Scholar
Liu, L. and Chen, X.B.: Titanmium dioxide nanomaterials: Self-structural modifications, Chem. Rev. 114, 98909918 (2014).CrossRefGoogle ScholarPubMed
Kim, W., Tachikawa, T., Moon, G.H., Majima, T., and Choi, W.: Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew. Chem., Int. Ed. 53, 1403614041 (2014).CrossRefGoogle ScholarPubMed
Ran, J., Zhang, J., Yu, J., Jaroniec, M., and Qiao, S.Z.: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 77877812 (2014).Google Scholar
Fujishima, K.H.A.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 3738 (1972).Google Scholar
Chen, X.B., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746750 (2011).Google Scholar
Chen, F.F., Cao, F.L., Li, H.X., and Bian, Z.F.: Exploring the important role of nanocrystals orientation in TiO2 superstructure on photocatalytic performances. Langmuir 31, 34943499 (2015).CrossRefGoogle ScholarPubMed
Cao, J.Y., Zhang, Y.J., Liu, L.Q., and Ye, J.H.: A p-type Cr-doped TiO2 photo-electrode for photo-reduction. Chem. Commun.. 49, 34403442 (2013).Google Scholar
Ponja, S., Sathasivam, S., Chadwick, N., Kafizas, A., Bawaked, S.M., Obaid, A.Y., Al-Thabaiti, S., Basahel, S.N., Parkin, I.P., and Carmalt, C.J.. Aerosol assisted chemical vapour deposition of hydrophobic TiO2–SnO2 composite film with novel microstructure and enhanced photocatalytic activity. J. Mater. Chem. A 1, 62716278 (2013).Google Scholar
Mao, C.Y., Zuo, F., Hou, Y., Bu, X.H., and Feng, P.Y.: In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew. Chem., Int. Ed. 53, pp. 1048510489 (2014).CrossRefGoogle ScholarPubMed
Zhou, W., Li, W., Wang, J.Q., Qu, Y., Yang, Y., Xie, Y., Zhang, K.F., Wang, L., Fu, H.G., and Zhao, D.Y.: Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 92809283 (2014).Google Scholar
Xu, H., Ouyang, S.X., Liu, L.Q., Reunchan, P., Umezawa, N., and Ye, J.H.: Recent advances in TiO2-based photocatalysis. J. Mater. Chem. A 2, 1264212661 (2014).Google Scholar
Bourikas, K., Kordulis, C., and Lycourghiotis, A.: Titanium dioxide (anatase and rutile): Surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 114, 97549823 (2014).CrossRefGoogle ScholarPubMed
Zhang, J.B., Xu, B., Chen, J.L., Wang, L.J., and Tian, W.J.: Oligo(phenothiazine)s: Twisted intramolecular charge transfer and aggregation-induced emission. J. Phys. Chem. C 117, 2311723125 (2013).Google Scholar
Fu, G.Z., Yang, Y.Q., Wei, G., Shu, X., Qiao, N., and Deng, L.: Influence of Sn doping on phase transformation and crystallite growth of TiO2 nanocrystals. J. Nanomater. 2014, 15 (2014).Google Scholar
Dutta, S.K., Mehetor, S.K., and Pradhan, N.: Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 6, 936944 (2015).Google Scholar
Yang, D., Sun, Y., Tong, Z., Tian, Y., Li, Y., and Jiang, Z.: Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J. Phys. Chem. C 119, 58275835 (2015).Google Scholar
Li, H.J., Zhou, Y., Tu, W.G., Ye, J., and Zou, Z.G.: State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 9981013 (2015).Google Scholar
McEntee, M., Stevanovic, A., Tang, W., Neurock, M., and Yates, J.T.: Electric field changes on Au nanoparticles on semiconductor supports-the molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO2 nanocatalysts. J. Am. Chem. Soc. 137, 19721982 (2015).CrossRefGoogle ScholarPubMed
Qian, K., Sweeny, B.C., Johnston-Peck, A.C., Niu, W., Graham, J.O., DuChene, J.S., Qiu, J., Wang, Y.C., Engelhard, M.H., Su, D., Stach, E.A., and Wei, W. D.: Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 136, 98429845 (2014).Google Scholar
DuChene, J.S., Sweeny, B.C., Johnston-Peck, A.C., Su, D., Stach, E.A., and Wei, W.D.: Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 53, 78877891 (2014).CrossRefGoogle ScholarPubMed
Pal, J., Sasmal, A.K., Ganguly, M., and Pal, T.: Surface plasmon effect of Cu and presence of n–p heterojunction in oxide nanocomposites for visible light photocatalysis. J. Phys. Chem. C 119, 37803790 (2015).Google Scholar
Yu, S., Lee, S. Y., Yeo, J., Han, J. W., and Yi, J.: Kinetic and mechanistic insights into the all-solid-state Z-schematic system. J. Phys. Chem. C 118, 2958329590 (2014).CrossRefGoogle Scholar
Passoni, L., Criante, L., Fumagalli, F., Scotognella, F., Lanzani, G., and Fonzo, F.D.: Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals. ACS Nano 8, 1216712174 (2014).Google Scholar
Liu, L., Dao, T.D., Kodiyath, R., Kang, Q., Abe, H., Nagao, T., and Ye, J.H.: Plasmonic Janus-composite photocatalyst comprising Au and C-TiO2 for enhanced aerobic oxidation over a broad visible-light range. Adv. Funct. Mater. 24, 77547762 (2014).Google Scholar
Jiang, Z.F., Wei, W., Mao, D.J., Chen, C., Shi, Y., Lv, X.M., and Xie, J.M., Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity. Nanoscale 7, 784797 (2015).CrossRefGoogle ScholarPubMed
Neatu, S., Macia-Agullo, J.A., Concepcion, P., and Garcia, H.: Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by vater. J. Am. Chem. Soc. 136, 1596915976 (2014).CrossRefGoogle Scholar
Wang, D.W., Li, Y., Li Puma, G., Wang, C., Wang, P.F., Zhang, W.L., and Wang, Q.: Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst. Chem. Commun. 49, 1036710369 (2013).CrossRefGoogle ScholarPubMed
Murdoch, M., Waterhouse, G.I., Nadeem, M.A., Metson, J.B., Keane, M.A., Howe, R.F., Llorca, J., and Idriss, H.: The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 3, 489492 (2011).CrossRefGoogle ScholarPubMed
Kodiyath, R., Manikandan, M., Liu, L., Ramesh, G.V., Koyasu, S., Miyauchi, M., Sakuma, Y., Tanabe, T., Gunji, T., Duy Dao, T., Ueda, S., Nagao, T., Ye, J., and Abe, H., Visible-light photodecomposition of acetaldehyde by TiO2-coated gold nanocages: Plasmon-mediated hot electron transport via defect states. Chem. Commun. 50, 1555315556 (2014).CrossRefGoogle ScholarPubMed
Ding, D., Liu, K., He, S., Gao, C., and Yin, Y.: Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. Nano Lett. 14, 67316736 (2014).Google Scholar
Xiong, Z., Zhang, L., and Zhao, X.S.: One-step synthesis of metal@titania core-shell materials for visible-light photocatalysis and catalytic reduction reaction. Chem.-Eur. J. 20, 1471514720 (2014).Google Scholar
Katagi, Y., Kazuma, E., and Tatsuma, T.: Photoelectrochemical synthesis, optical properties and plasmon-induced charge separation behaviour of gold nanodumbbells on TiO2. Nanoscale 6, 1454314548 (2014).Google Scholar
Jiang, R., Li, B., Fang, C., and Wang, J.: Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 26, 52745309 (2014).Google Scholar
Chen, T., Wang, Y., Wang, Y., and Xu, Y.: Biotemplated synthesis of hierarchically nanostructured TiO2 using cellulose and its applications in photocatalysis. RSC Adv. 5, 16731679 (2015).Google Scholar
Wu, X.F., Song, H.Y., Yoon, J.M., Yu, Y.T., and Chen, Y.F.: Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 25, 64386447 (2009).Google Scholar
Duan, Y.Y. and Che, S.A.: Electron transition-based optical activity (ETOA) of achiral metal oxides derived from chiral mesoporous silica. Chem.-Eur. J. 19, 1046810472 (2013).Google Scholar
Liu, S.H., Han, L., Duan, Y.Y., Asahina, S., Terasaki, O., Cao, Y.Y., Liu, B., Ma, L.G., Zhang, J.L., and Che, S.A.: Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nat. Commun. 3, 12151220 (2012).CrossRefGoogle ScholarPubMed
Zhu, H.L., Parvinian, S., Preston, C., Vaaland, O., Ruan, Z.C., and Hu, L.B., Transparent nanopaper with tailored optical properties. Nanoscale 5, 37873792 (2013).Google Scholar
Yu, H.Y., Qin, Z.Y., Liang, B.L., Liu, N., Zhou, Z., and Chen, L.: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 1, 39383944 (2013).Google Scholar
Möller, M., Harnisch, F., and Schröder, U.: Hydrothermal liquefaction of cellulose in subcritical water-the role of crystallinity on the cellulose reactivity. RSC Adv. 3, 1103511044 (2013).Google Scholar
Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 6269 (1968).Google Scholar
Lai, Z.C., Peng, F., Wang, H.J., Yu, H., Zhang, S.Q., and Zhao, H.J.: A new insight into regulating high energy facets of rutile TiO2. J. Mater. Chem. A 1, 41824185 (2013).Google Scholar
Sabyrov, K., Burrows, N.D., and Penn, R.L.: Size-dependent anatase to rutile phase transformation and particle growth. Chem. Mater. 25, 14081415 (2013).Google Scholar
Li, A., Jin, Y., Muggli, D., Pierce, D.T., Aranwela, H., Marasinghe, G.K., Knutson, T., Brockman, G., and Zhao, J.X.: Nanoscale effects of silica particle supports on the formation and properties of TiO2 nanocatalysts. Nanoscale 5, 58545862 (2013).Google Scholar
Wang, Y., Zhang, H., Liu, P., Yao, X., and Zhao, H.: Engineering the band gap of bare titanium dioxide materials for visible-light activity: A theoretical prediction. RSC Adv. 3, 87778782 (2013).Google Scholar
Kang, Q., Cao, J., Zhang, Y., Liu, L., Xu, H., and Ye, J.: Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A 1, 5766 (2013).Google Scholar
Goswami, P. and Ganguli, J.N.: A novel synthetic approach for the preparation of sulfated titania with enhanced photocatalytic activity. RSC Adv. 3, 88788888 (2013).Google Scholar
Zhang, H., Zhao, Y., Chen, S., Yu, B., Xu, J., Xu, H., Hao, L., and Liu, Z.: Ti3+ self-doped TiOx@anatase core–shell structure with enhanced visible light photocatalytic activity. J. Mater. Chem. A 1, 61386144 (2013).CrossRefGoogle Scholar
Chen, L.P., Li, S., Liu, Z.P., Lu, Y.C., Wang, D.J., Lin, Y.H., and Xie, T.F.: Surface photovoltage phase spectra for analysing the photogenerated charge transfer and photocatalytic activity of ZnFe2O4–TiO2 nanotube arrays. Phys. Chem. Chem. Phys. 15, 1426214269 (2013).Google Scholar
Peng, L.L., Xie, T.F., Lu, Y.C., Fan, H.M., and Wang, D.J.: Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 12, 80338041 (2010).Google Scholar
Yamakata, A., Vequizo, J.J.M., and Matsunaga, H.: Distinctive behavior of photogenerated electrons and holes in anatase and rutile TiO2 powders. J. Phys. Chem. C 119, 2453824545 (2015).Google Scholar
Naya, S., Niwa, T., Kume, T., and Tada, H.: Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew. Chem., Int. Ed. 53, 73057309 (2014).Google Scholar
Mubeen, S., Lee, J., Lee, W., Singh, N., Stucky, G.D., and Moskovits, M.: On the plasmonic photovoltaic. ACS Nano 8, 60666073 (2014).Google Scholar
Zhang, F., Cao, H.Q., Yue, D.M., Zhang, J.X., and Qu, M.Z.: Enhanced anode performances of polyaniline–TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg. Chem. 51, 95449551 (2012).Google Scholar
Yan, J.Q., Wu, G.J., Guan, N.J., Li, L.D., Li, Z.X., and Cao, X.Z.: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Phys. Chem. Chem. Phys. 15, 1097810988 (2013).Google Scholar
Iwabuchi, A., Choo, C.K., and Tanaka, K.: Titania nanoparticles prepared with pulsed laser ablation of rutile single crystals in water. J. Phys. Chem. B 108, 1086310871 (2004).Google Scholar
Kaleji, B.K.: Comparison of optical and structural properties of nanostructure TiO2 thin film doped by Sn and Nb. J. Sol-Gel. Sci. Techn. 67, 312320 (2013).CrossRefGoogle Scholar
Wang, X.S., Wang, Y., Zhu, J.R., and Xu, Y.: Hierarchical AgNR@Cys@AuNPs helical core–satellite nanostructure: Shape-dependent assembly and chiroptical response. J. Phys. Chem. C 118, 57825788 (2014).Google Scholar
Liu, S.W., Xia, J.Q., and Yu, J.G.: Amine-functionalized titanate nanosheet-assembled yolk@shell microspheres for efficient cocatalyst-free visible-light photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces. 7, 81668175 (2015).Google Scholar
Li, X., Yu, J.G., Low, J.X., Fang, Y.P., Xiao, J., and Chen, X.B.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 24852534 (2015).Google Scholar
Kafizas, A., Adriaens, D., Mills, A., and Parkin, I.P.: Simple method for the rapid simultaneous screening of photocatalytic activity over multiple positions of self-cleaning films. Phys. Chem. Chem. Phys. 11, 83678375 (2009).CrossRefGoogle ScholarPubMed
Supplementary material: File

Yan supplementary material

Yan supplementary material 1

Download Yan supplementary material(File)
File 4.4 MB