Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T19:29:10.447Z Has data issue: false hasContentIssue false

A biomimetic strategy for controllable degradation of chitosan scaffolds

Published online by Cambridge University Press:  13 June 2012

Yuangang Liu*
Affiliation:
Department of Chemical Engineering and Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
Changren Zhou*
Affiliation:
Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
Yan Sun
Affiliation:
Department of Biotechnology, Guangdong Pharmaceutical University 510006, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Controllable degradation of scaffolds plays an important role in tissue engineering applications. Here, we describe a biomimetic approach to control chitosan scaffold degradation by incorporating lysozyme-loaded poly(D,L-lactic-co-glycolic acid) microspheres in 3D chitosan scaffolds. In vitro degradation tests reveal that the degradation rate increased when the mass ratio of microspheres-to-chitosan increased whereas the contrast group showed a visible turning point at 28d. In vivo degradation rate was much faster than that in vitro, and the relationship between in vitro degradation and in vivo degradation was correlative. Finally, for determining the primary biocompatibility of the combined scaffolds, studies such as cytotoxicity assay, cell attachment study and histological evaluation were carried out. It is concluded that the combination method of enzyme and scaffold is suitable for chitosan scaffold degradation; it also demonstrates an alternative strategy for other biomaterials used in tissue engineering.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Abdullin, V.F., Shipovskaya, A.B., Fomina, V.I., Artemenko, S.E., Ovchinnikova, G.P., and Pchelintseva, E.V.: Physicochemical properties of chitosan from different raw material sources. Fibre Chem. 40, 40 (2008).CrossRefGoogle Scholar
2.Wang, W.P., Du, Y.M., and Wang, X.Y.: Physical properties of fungal chitosan. World J. Microbiol. Biotechnol. 24, 2717 (2008).CrossRefGoogle Scholar
3.Tsujikawa, T., Kanauchi, O., Andoh, A., Saotome, T., Sasaki, M., Fujiyama, Y., and Bamba, T.: Supplement of a chitosan and ascorbic acid mixture for Crohn’s disease: A pilot study. Nutrition 19, 137 (2003).CrossRefGoogle ScholarPubMed
4.Seol, Y.J., Lee, J.Y., Park, Y.J., Lee, Y.M., Young-Ku, , Rhyu, I.C., Lee, S.J., Han, S.B., and Chung, C.P.: Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol. Lett. 26, 1037 (2004).CrossRefGoogle ScholarPubMed
5.Ren, D., Yi, H., Wang, W., and Ma, X.: The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr. Res. 340, 2403 (2005).CrossRefGoogle ScholarPubMed
6.Lu, G.Y., Kong, L.J., Sheng, B.Y., Wang, G., Gong, Y.D., and Zhang, X.F.: Degradation of covalently crosslinked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. Eur. Polym. J. 43, 3807 (2007).CrossRefGoogle Scholar
7.Freier, T., Koh, H.S., Kazazian, K., and Shoichet, M.S.: Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26, 5872 (2005).CrossRefGoogle ScholarPubMed
8.Yuan, Y., Chesnutt, B.M., Wright, L., Haggard, W.O., and Bumgardner, J.D.: Mechanical property, degradation rate, and bone cell growth of chitosan-coated titanium influenced by degree of deacetylation of chitosan. J. Biomed. Mater. Res. Part B 86, 245 (2007).Google Scholar
9.Li, J., Du, Y., and Liang, H.: Influence of molecular parameters on the degradation of chitosan by a commercial enzyme. Polym. Degrad. Stab. 92, 515 (2007).CrossRefGoogle Scholar
10.Wan, Y., Yu, A.X., Wu, H., Wang, Z., and Wen, D.: Porous-conductive chitosan scaffolds for tissue engineering II. In vitro and in vivo degradation. J. Mater. Sci. - Mater. Med. 16, 1017 (2005).CrossRefGoogle ScholarPubMed
11.Cunha-Reis, C., TuzlaKoglu, K., Baas, E., Yang, Y., EI Haj, A., and Reis, R.L.: Influence of porosity and fiber diameter on the degradation of chitosan fiber-mesh scaffolds and cell adhesion. J. Mater. Sci. - Mater. Med. 18, 195 (2007).CrossRefGoogle Scholar
12.Ren, D., Yi, H., Zhang, H., Xie, W., Wang, W., and Ma, X.: A preliminary study on fabrication of nanoscale fibrous chitosan membranes in situ by biospecific degradation. J. Membr. Sci. 280, 99 (2006).CrossRefGoogle Scholar
13.She, Z., Zhang, B., Jin, C., Feng, Q., and Xu, Y.: Preparation and in vitro degradation of porous three-dimensional silk fibroin/chitosan scaffold. Polym. Degrad. Stab. 98, 1316 (2008).CrossRefGoogle Scholar
14.Prashanth, K.V.H., Lakshman, K., Shamala, T.R., and Tharanathan, R.N.: Biodegradation of chitosan-graft-polymethylmethacrylate films. Int. Biodeterior. Biodegrad. 56, 115 (2005).CrossRefGoogle Scholar
15.Picart, C., Schneider, A., Etienne, O., Mutterer, J., Schaaf, P., Egles, C., Jessel, N., and Voegel, J.C.: Controlled degradability of polysaccharide multilayer films in vitro and in vivo. Adv. Funct. Mater. 15, 1771 (2005).CrossRefGoogle Scholar
16.Hong, Y., Song, H., Gong, Y., Mao, Z., Gao, C., and Shen, J.: Covalently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater. 3, 23 (2007).CrossRefGoogle ScholarPubMed
17.Kuijpers, A.J., Wachem, P.B., Luyn, M.J.A., Engbers, G.H.M., Krijgsveld, J., Zaat, S.A.J., Dankert, J., and Feijen, J.: In vivo and in vitro release of lysozyme from crosslinked gelatin hydrogels: A model system for the delivery of antibacterial proteins from prosthetic heart valves. J. Controlled Release 67, 323 (2000).CrossRefGoogle Scholar
18.Kang, F., Jiang, G., Hinderliter, A., DeLuca, P.P., and Singh, J.: Lysozyme stability in primary emulsion for PLGA microsphere preparation: Effect of recovery methods and stabilizing excipients. Pharm. Res. 19, 629 (2002).CrossRefGoogle ScholarPubMed
19.Morozova-Roche, L.A.: Equine lysozyme: The molecular basis of folding, self-assembly and innate amyloid toxicity. FEBS Lett. 581, 2587 (2007).CrossRefGoogle ScholarPubMed
20.Mossuto, M.F., Dhulesia, A., Devlin, G., Frare, E., Kumita, J.R., Laureto, P.P., Dumoulin, M., Fontana, A., Dobson, C.M., and Salvatella, X.: The non-core regions of human lysozyme amyloid fibrils influence cytotoxicity. J. Mol. Biol. 402, 783 (2010).CrossRefGoogle ScholarPubMed
21.Mishra, R., Sörgjerd, K., Nyström, S., Nordigården, A., Yu, Y.C., and Hammarström, P.: Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact-protein binding and conversion. J. Mol. Biol. 366, 1029 (2007).CrossRefGoogle ScholarPubMed
22.Cerven, D., DeGeorge, G., and Bethell, D.: 28-Day repeated dose oral toxicity of recombinant human apo-lactoferrin or recombinant human lysozyme in rats. Regul. Toxicol. Pharm. 51, 162 (2008).CrossRefGoogle ScholarPubMed
23.Jiang, T., Nukavarapu, S.P., Deng, M., Jabbarzadeh, E., Kofron, M.D., Doty, S.B., Abdel-Fattah, W.I., and Laurencin, C.T.: Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomater. 6, 3457 (2010).CrossRefGoogle ScholarPubMed
24.Wang, M., Feng, Q., Guo, X., She, Z., and Tan, R.: A dual microsphere based on PLGA and chitosan for delivering the oligopeptide derived from BMP-2. Polym. Degrad. Stab. 96, 107 (2011).CrossRefGoogle Scholar
25.Ganji, F. and Abdekhodaie, M.J.: Chitosan-g-PLGA copolymer as a thermosensitive membrane. Carbohydr. Polym. 80, 740 (2010).CrossRefGoogle Scholar
26.Tan, H., Wu, J., Lao, L., and Gao, C.: Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater. 5, 328 (2009).CrossRefGoogle ScholarPubMed
27.Nandagiri, V.K., Gentile, P., Chiono, V., Tonda-Turo, C., Matsiko, A., Ramtoola, Z., Montevecchi, F.M., and Ciardelli, G.: Incorporation of PLGA nanoparticles into porous chitosan-gelatin scaffolds: Influence on the physical properties and cell behavior. J. Mech. Behav. Biomed. Mater. 4, 1318 (2011).CrossRefGoogle ScholarPubMed
28.Martins, A.M., Pereira, R.C., Leonor, I.B., Azevedo, H.S., and Reis, R.L.: Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: A novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation. Acta Biomater. 5, 3328 (2009).CrossRefGoogle ScholarPubMed
29.Wong, H.M., Wang, J.J., and Wang, C.H.: In vitro sustained release of human immunoglobulin G from biodegradable microspheres. Ind. Eng. Chem. Res. 40, 933 (2001).CrossRefGoogle Scholar
30.Jiang, G., Woo, B.H., Kang, F., Singh, J., and DeLuca, P.P.: Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(D, L-lactide- co-glycolide) microspheres. J. Controlled Release 79, 137 (2002).CrossRefGoogle ScholarPubMed
31.Sharif, S. and O’Hagan, D.T.: A comparison of alternative methods for the determination of the levels of proteins entrapped in poly(lactide-co-glycolide) microparticles. Int. J. Pharm. 115, 259 (1995).CrossRefGoogle Scholar
32.Blanco, D. and Alonso, M.J.: Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: Effect of the protein and polymer properties and of thecoencapsulation of surfactants. Eur. J. Pharm. Biopharm. 45, 285 (1998).CrossRefGoogle ScholarPubMed
33.Bezemer, J.M., Radersma, R., Grijpma, D.W., Dijkstra, P.J., Feijen, J., and Blitterswijk, C.A.: Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylenes terephthalate) matrices. J. Controlled Release 64, 179 (2000).CrossRefGoogle Scholar
34.Krishnamurthy, R., Lumpkin, J.A., and Sridhar, R.: Inactivation of lysozyme by sonication under conditions relevant to microencapsulation. Int. J. Pharm. 205, 23 (2000).CrossRefGoogle ScholarPubMed
35.Deng, Q., Zhou, C., and Luo, B.: Preparation and characterization of chitosan nanoparticles containing lysozyme. Pharm. Biol. 44, 336 (2006).CrossRefGoogle Scholar
36.Jaklenec, A., Wan, E., Murray, M.E., and Mathiowitz, E.: Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering. Biomaterials 29, 185 (2008).CrossRefGoogle ScholarPubMed
37.Malafaya, P.B., Santos, T.C., Griensven, M., and Reis, R.L.: Morphology, mechanical characterization and in vivo neovascularization of chitosan particle aggregated scaffolds architectures. Biomaterials 29, 3914 (2008).CrossRefGoogle ScholarPubMed
38.Nam, Y.S., Song, S.H., Choi, J.Y., and Park, T.G.: Lysozyme microencapsulation within biodegradable PLGA microspheres: Urea effect on protein release and stability. Biotechnol. Bioeng. 70, 270 (2000).3.0.CO;2-8>CrossRefGoogle ScholarPubMed
39.Pérez, C., Jesús, P., and Griebenow, K.: Preservation of lysozyme structure and function upon encapsulation and release from poly(lactide-co-glycolic) acid microspheres prepared by the water-in-oil-in-water method. Int. J. Pharm. 248, 193 (2002).CrossRefGoogle Scholar
40.Aubert-Pouëssel, A., Bibby, D.C., Venier-Julienne, M.C., Hindré, F., and Benoît, J.P.: A novel in vitro delivery system for assessing the biological integrity of protein upon release from PLGA microspheres. Pharm. Res. 19, 1046 (2002).CrossRefGoogle ScholarPubMed
41.Hiraoka, Y., Yamashiro, H., Yasuda, K., Kimura, Y., Inamoto, T., and Tabata, Y.: In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. Tissue Eng. 12, 1475 (2006).CrossRefGoogle ScholarPubMed
42.Ungaro, F., Biondi, M., d’Angelo, I., Indolfi, L., Quaglia, F., Netti, P.A., and Rotonda, M.I.L.: Microsphere-integrated collagen scaffolds for tissue engineering: Effect of microsphere formulation and scaffold properties on protein release kinetics. J. Controlled Release 113, 128 (2006).CrossRefGoogle ScholarPubMed
43.Niu, X., Feng, Q., Wang, M., Guo, X., and Zheng, Q.: In vitro degradation and release behavior of porous poly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived synthetic peptide. Polym. Degrad. Stab. 94, 176 (2009).CrossRefGoogle Scholar