Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T08:29:36.223Z Has data issue: false hasContentIssue false

Biaxially textured yttria stabilized zirconia buffer layers on rotating cylindrical surfaces

Published online by Cambridge University Press:  31 January 2011

J. Hoffmann
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
J. Dzick
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
J. Wiesmann
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
K. Heinemann
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
F. Garcia-Moreno
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
H. C. Freyhardt
Affiliation:
Institut für Metallphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, Germany
Get access

Abstract

Biaxially textured yttria stabilized zirconia (YSZ) buffer layers are prepared on rotating cylindrical surfaces by an ion-beam-assisted deposition (IBAD) process. A large fraction of the cylinder surface can be coated at the same time, resulting in an effective deposition rate of 40 nm/h for the whole tube circumference (diameter of the tube 12 mm). The in-plane alignment depends on the total film thickness and the rotation velocity. The best in-plane textures achieved so far with a full width half maximum (FWHM) value of 27° are sufficient for the preparation of YbaCuO films with critical current densities above 105 A cm−2 at 77 K and self-fields.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
2.Simon, T., Ph.D. Thesis, University of Göttingen (1995).Google Scholar
3.Wu, X. D., Foltyn, S.R., Arendt, P. N., Blumenthal, W. R., Campbell, I. H., Cotton, J. D., Coulter, J. Y., Hults, W. L., Maley, M. P., Safar, H. F., and Smith, J. L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
4.Freyhardt, H. C., Usoskin, A., and Moreno, F. G., Proceedings of the Applied Superconductivity Conference, Pittsburgh (unpublished).Google Scholar
5.Sonnenberg, N., Longo, A. S., Cima, M. J., Chang, B. P., Ressler, K. G., McIntyre, P. C., and Liu, Y., J. Appl. Phys. 74, 1027 (1993).CrossRefGoogle Scholar
6.Wiesmann, J., Diploma Thesis, University of Göttingen (1994).Google Scholar
7.Freyhardt, H. C., Hoffmann, J., Wiesmann, J., Dzick, J., Heinemann, K., Isaev, A., Garcia-Moreno, F., Sievers, S., and Usoskin, A., IEEE Trans. Appl. Superconductivity (in press).Google Scholar
8.Wiesmann, J., Hoffmann, J., Usoskin, A., Garcia-Moreno, F., Heinemann, K., and Freyhardt, H. C., Proceedings of the European Conference of Applied Superconductivity, Edinburgh (1995).Google Scholar