Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T13:25:22.908Z Has data issue: false hasContentIssue false

Bending manipulation and measurements of fracture strength of silicon and oxidized silicon nanowires by atomic force microscopy

Published online by Cambridge University Press:  08 November 2011

Gheorghe Stan*
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Sergiy Krylyuk
Affiliation:
Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742
Albert V. Davydov
Affiliation:
Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Robert F. Cook
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, the ultimate bending strengths of as-grown Si and fully oxidized Si nanowires (NWs) were investigated by using a new atomic force microscopy (AFM) bending method. NWs dispersed on Si substrates were bent into hook and loop configurations by AFM manipulation. The adhesion between NWs and the substrate provided sufficient restraint to retain NWs in imposed bent states and allowed subsequent AFM imaging. The stress and friction force distributions along the bent NWs were calculated based on the in-plane configurations of the NWs in the AFM images. As revealed from the last-achieved bending state, before fracture, fracture strengths close to the ideal strength of materials were attained in these measurements: 17.3 GPa for Si NWs and 6.2 GPa for fully oxidized Si NWs.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Duan, X., Niu, C., Sahi, V., Chen, J., Parce, J.W., Empedocles, S., and Goldman, J.L.: High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274 (2003).CrossRefGoogle ScholarPubMed
2.McAlpine, M.C., Friedman, R.S., Jin, S., Lin, K-h., Wang, W.U., and Lieber, C.M.: High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 3, 1531 (2003).CrossRefGoogle Scholar
3.Xu, F., Lu, W., and Zhu, Y.: Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5, 672 (2011).CrossRefGoogle ScholarPubMed
4.Huang, Y., Duan, X., and Lieber, C.M.: Nanowires for integrated multicolor nanophotonics. Small 1, 142 (2005).CrossRefGoogle ScholarPubMed
5.He, R.R. and Yang, P.D.: Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42 (2006).CrossRefGoogle ScholarPubMed
6.Feng, X.L., He, R., Yang, P., and Roukes, M.L.: Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953 (2007).CrossRefGoogle Scholar
7.Kotov, N.A., Winter, J.O., Clements, I.P., Jan, E., Timko, B.P., Campidelli, S., Pathak, S., Mazzatenta, A., Lieber, C.M., Prato, M., Bellamkonda, R.V., Silva, G.A., Kam, N.W.S., Patolsky, F., and Ballerini, L.: Nanomaterials for neural interfaces. Adv. Mater. 21, 3970 (2009).CrossRefGoogle Scholar
8.Wang, Z.L. and Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).CrossRefGoogle ScholarPubMed
9.Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, C.M.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007).CrossRefGoogle ScholarPubMed
10.Huang, Z., Fang, H., and Zhu, J.: Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 19, 744 (2007).CrossRefGoogle Scholar
11.Peng, K., Zhang, M., Lu, A., Wong, N-B., Zhang, R., and Lee, S-T.: Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl. Phys. Lett. 90, 163123 (2007).CrossRefGoogle Scholar
12.Morales, M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
13.Hochbaum, I., Fan, R., He, R., and Yang, P.: Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457 (2005).CrossRefGoogle ScholarPubMed
14.Hoffmann, S., Utke, I., Moser, B., Michler, J., Christiansen, S.H., Schmidt, V., Senz, S., Werner, P., Gösele, U., and Ballif, C.: Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 6, 622 (2006).CrossRefGoogle ScholarPubMed
15.Han, X., Zheng, K., Zhang, Y., Zhang, X., Zhang, Z., and Wang, Z.L.: Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112 (2007).CrossRefGoogle Scholar
16.Zhu, Y., Xu, F., Qin, Q., Fung, W.Y., and Lu, W.: Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9, 3934 (2009).CrossRefGoogle ScholarPubMed
17.Stan, G., Krylyuk, S., Davydov, A.V., and Cook, R.F.: Compressive stress effect on the radial elastic modulus of oxidized Si nanowires. Nano Lett. 10, 2031 (2010).CrossRefGoogle ScholarPubMed
18.Lee, B. and Rudd, R.E.: First-principle calculation of mechanical properties of Si<001> nanowires and comparison to nanomechanical theory. Phys. Rev. B 75, 195328 (2007).CrossRefGoogle Scholar
19.Leu, P.W., Svizhenko, A., and Cho, K.: Ab initio calculations of mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008).CrossRefGoogle Scholar
20.Wong, S.S., Sheehan, P.E., and Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997).CrossRefGoogle Scholar
21.Lourie, O., Cox, D.M., and Wagner, H.D.: Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638 (1998).CrossRefGoogle Scholar
22.Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Wagner, H.D., and Tenne, R.: On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. USA 103, 523 (2006).CrossRefGoogle ScholarPubMed
23.Zhu, T., Li, J., Ogata, S., and Yip, S.: Mechanics of ultra-strength materials. MRS Bull. 34, 167 (2009).CrossRefGoogle Scholar
24.Felbeck, D.K. and Atkins, A.G.: Strength and Fracture of Engineering Solids (Prentice-Hall, Englewood Cliffs, NJ, 1984).Google Scholar
25.Kelly, A. and Macmillan, N.H.: Strong Solids, 3rd ed. (Oxford University Press, New York, 1986).Google Scholar
26.Cook, R.F.: Strength and sharp contact fracture of silicon. J. Mater. Sci. 41, 841 (2006).CrossRefGoogle Scholar
27.Namazu, T., Isono, Y., and Tanaka, T.: Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450 (2000).CrossRefGoogle Scholar
28.Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).CrossRefGoogle ScholarPubMed
29.Wu, B., Heidelberg, A., and Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 295 (2005).CrossRefGoogle ScholarPubMed
30.Ngo, L.T., Almecija, D., Sader, J.E., Daly, B., Petkov, N., Holmes, J.D., Erts, D., and Boland, J.J.: Ultimate-strength germanium nanowires. Nano Lett. 6, 2964 (2006).CrossRefGoogle ScholarPubMed
31.Brambilla, G. and Payne, D.N.: The ultimate strength of glass silica nanowires. Nano Lett. 9, 831 (2009).CrossRefGoogle ScholarPubMed
32.Richter, G., Hillerich, K., Gianola, D.S., Mönig, R., Kraft, O., and Volkert, C.A.: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048 (2009).CrossRefGoogle ScholarPubMed
33.Gordon, M.J., Baron, T., Dhalluin, F., Gentile, P., and Ferret, P.: Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett. 9, 525 (2009).CrossRefGoogle ScholarPubMed
34.Johansson, S., Schweitz, J-A., Tenerz, L., and Tiren, J.: Fracture testing of silicon microelements in situ in a scanning electron microscope. J. Appl. Phys. 63, 4799 (1988).CrossRefGoogle Scholar
35.Wilson, C.J., Ormeggi, A., and Narbutovskih, M.: Fracture testing of silicon microcantilever beams. J. Appl. Phys. 79, 2386 (1996).CrossRefGoogle Scholar
36.Smith, D.A., Holmberg, V.C., and Korgel, B.A.: Flexible germanium nanowires: Ideal strength, room temperature plasticity, and bendable semiconductor fabric. ACS Nano 4, 2356 (2010).CrossRefGoogle ScholarPubMed
37.Tabib-Azar, M., Nassirou, M., Wang, R., Sharma, S., Kamins, T.I., Islam, M.S., and Williams, R.S.: Mechanical properties of self-welded silicon nanobridges. Appl. Phys. Lett. 87, 113102 (2005).CrossRefGoogle Scholar
38.Walavalkar, S.S., Homyk, A.P., Henry, M.D., and Scherer, A.: Controllable deformation of silicon nanowires with strain up to 24 %. J. Appl. Phys. 107, 124314 (2010).CrossRefGoogle Scholar
39.Zheng, K., Han, X., Wang, L., Zhang, Y., Yue, Y., Qin, Y., Zhang, X., and Zhang, Z.: Atomistic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 9, 2471 (2009).CrossRefGoogle Scholar
40.France, P.W., Paradine, M.J., Reeve, M.H., and Newns, G.R.: Liquid nitrogen strengths of coated optical glass fibers. J. Mater. Sci. 15, 825 (1980).CrossRefGoogle Scholar
41.Matthewson, M.J. and Kurkjian, C.R.: Strength measurement of optical fibers by bending. J. Am. Ceram. Soc. 69, 815 (1986).CrossRefGoogle Scholar
42.Krylyuk, S., Davydov, A.V., Levin, I., Motayed, A., and Vaudin, M.D.: Rapid thermal oxidation of silicon nanowires. Appl. Phys. Lett. 94, 063113 (2009).CrossRefGoogle Scholar
43.Strus, M.C., Lahiji, R.R., Ares, P., Lopez, V., Raman, A., and Reifenberger, R.: Strain energy and lateral friction force distribution of carbon nanotubes manipulated into shapes by atomic force microscopy. Nanotechnology 20, 385709 (2009).CrossRefGoogle ScholarPubMed
44.Tummers, B.: DataThief III, http://datathief.org/.Google Scholar
45.Landau, L.D. and Lifshitz, E.M.: Theory of Elasticity, Vol. 7, 3rd ed. (Oxford, UK, Butterworth-Heinemann, 1986), p. 65.Google Scholar
46.Timoshenko, S.: Strength of Materials, Part I, 2nd ed. (D. Van Nostrand Comp, Inc.), p. 90 (1930).Google Scholar
47.Bordag, M., Ribayrol, A., Conache, G., Fröberg, L.E., Gray, S., Samuelson, L., Montelius, L., and Pettersson, H.: Shear stress measurements on InAs nanowires by AFM manipulation. Small 3, 1398 (2007).CrossRefGoogle ScholarPubMed
48.Conache, G., Gray, S.M., Ribayrol, A., Fröberg, L.E., Samuelson, L., Pettersson, H., and Montelius, L.: Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5, 203 (2009).CrossRefGoogle ScholarPubMed
49.Wu, S., Fu, X., Hu, X., and Hu, X.: Manipulation and behavior modeling of one-dimensional nanomaterials on a structured surface. Appl. Surf. Sci. 256, 4738 (2010).CrossRefGoogle Scholar
50.Zheng, K., Wang, C., Cheng, Y.Q., Yue, Y., Han, X., Zhang, Z., Shan, Z., Mao, S.X., Ye, M., Yin, Y., and Ma, E.: Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 1, 24 (2010).CrossRefGoogle ScholarPubMed
51.Hatty, V., Kahn, H., and Heuer, A.H.: Fracture toughness, fracture strength, and stress-corrosion cracking of silicon dioxide thin films. J. Microelectromech. Syst. 17, 943 (2008).CrossRefGoogle Scholar