Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T05:36:13.117Z Has data issue: false hasContentIssue false

The behavior of screw dislocations dynamically emitted from the tip of a surface crack during loading and unloading

Published online by Cambridge University Press:  03 March 2011

C.C. Huang
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
C.C. Yu
Affiliation:
Department of Physics, Chung Yuan Christian University, Chung-Li, Taiwan, Republic of China
Sanboh Lee
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

The behavior of screw dislocations dynamically emitted from the tip of a surface crack during loading and unloading has been investigated using a discrete dislocation model. The critical stress intensity factor at the crack tip for dislocation emission is a function of friction stress, core radius of dislocation, and dislocations near the crack tip. During motion, the velocity of dislocation is assumed to be proportional to the effective shear stress to the third power. The effect of crack length and friction stress on dislocation distributions, plastic zone, and dislocation-free zone during loading and unloading was examined.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bilby, B. A., Cottrell, A. H., and Swinden, K. H., Proc. R. Soc. London A 272, 304 (1963).Google Scholar
2Ohr, S. M., J. Mater. Sci. Eng. 72, 1 (1985).Google Scholar
3Majumdar, B. S. and Bums, S. J., Int. J. Fracture 21, 229 (1983).Google Scholar
4Chang, S. J. and Ohr, S. M., J. Appl. Phys. 52, 7174 (1981).Google Scholar
5Chang, S. J. and Ohr, S. M., J. Appl. Phys. 53, 5645 (1982).Google Scholar
6Chang, S. J. and Ohr, S. M., Int. J. Fracture 23, R3 (1983).Google Scholar
7Li, W. L. and Li, J.C.M., Philos. Mag. 59A, 1245 (1989).Google Scholar
8Shiue, S. T. and Lee, S., J. Appl. Phys. 70, 2947 (1991).Google Scholar
9Dai, S. H. and Li, J.C.M., Scripta Metall. 16, 183 (1982).Google Scholar
10Shiue, S. T. and Lee, S., Philos. Mag. 61A, 85 (1990).Google Scholar
11Shiue, S. T. and Lee, S.J. Mater. Sci. Eng. (1994, in press).Google Scholar
12Zhao, R. H., Dai, S. H., and Li, J. C. M., Int. J. Fracture 29, 3 (1985).Google Scholar
13Zhao, R. H. and Li, J.C.M., J. Appl. Phys. 58, 4117 (1985).Google Scholar
14Zhang, T. Y., Z. Metall. 81, 63 (1990).Google Scholar
15Shiue, S-T., Zhang, T-Y., and Lee, S., J. Mater. Res. 8, 1853 (1993).CrossRefGoogle Scholar
16Rice, J. R. and Thomson, R., Philos. Mag. 29A, 73 (1974).Google Scholar
17Schoeck, G., Philos. Mag. 63A, 111 (1991).Google Scholar
18Rice, J. R., J. Mech. Phys. Solids 40, 239 (1992).Google Scholar
19Shastry, V., Anderson, P. M., and Thomson, R., J. Mater. Res. 9, 812 (1994).Google Scholar
20Reed-Hill, R.E., Physical Metallurgy Principles, 2nd ed. (Van Nostrand, New York, 1973), p. 146.Google Scholar
21Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (Wiley, New York, 1982), p. 241.Google Scholar