Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T04:52:48.608Z Has data issue: false hasContentIssue false

BaRuO3 thin film electrode for ferroelectric lead zirconate titanate capacitors

Published online by Cambridge University Press:  31 January 2011

Sang-Mo Koo
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S-100 44, Stockholm, Sweden
Li-Rong Zheng
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S-100 44, Stockholm, Sweden
K. V. Rao
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S-100 44, Stockholm, Sweden
Get access

Abstract

The characteristics of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) capacitor on conductive BaRuO3 thin films deposited by pulsed laser deposition (PLD) were investigated. The BaRuO3 layer grown epitaxially on LaAlO3(100) substrates at a substrate temperature of 700 °C was found to have a resistivity around 145 μΩ cm at 300 K. The subsequently deposited PZT film showed a c-axis orientation perpendicular to the substrate, and the remnant polarization, ΔP (= P* – P^), and coercive field, EC, of the capacitor were 24.7 μC/cm2 and 52 kV/cm, respectively. Fatigue characteristics of the PZT on BaRuO3 electrodes are far better than those obtained with polycrystalline PZT with Pt structures and comparable to those on epitaxial Yba2Cu3O7−x electrodes. With the new metallic electrode, the PZT layer exhibits no serious degradation in fatigue endurance up to 1010 cycles.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Destefanis, G.L., Ligeon, J.P., Valette, S., Farmery, B.W., Townsed, P.D., and Perez, A., J. Appl. Phys. 50, 7898 (1979).CrossRefGoogle Scholar
2.Scott, J.F. and Araujo, C.A., Science 246, 1400 (1989).CrossRefGoogle Scholar
3.Kingon, A.I., Auciello, O., Ameen, M.S., Rou, S.H., and Krauss, A.R., Appl. Phys. Lett. 55, 301 (1989).CrossRefGoogle Scholar
4.Kumar, C.V.R.V, Pascual, P., and Sayer, M., J. Appl. Phys. 71, 864 (1992).CrossRefGoogle Scholar
5.Sudhama, C., Campbell, A.C., Maniar, P.D., Jones, R.E., Moazzami, R., Mogab, C.J., and Lee, J.C., J. Appl. Phys. 75, 1014 (1994).CrossRefGoogle Scholar
6.Ramesh, R., Sands, T., and Keramidas, V.G., Appl. Phys. Lett. 63, 731 (1993).CrossRefGoogle Scholar
7.Bernstein, S.D., Wong, T.Y., Kisler, Y., and Tustison, R.W., J. Mater. Res. 8, 12 (1993).CrossRefGoogle Scholar
8.Jin, H. and Kim, T.S., J. Appl. Phys. 79, 9245 (1996).CrossRefGoogle Scholar
9.Ramesh, R., Lee, J., Sands, T., Keramidas, V.G., and Auciello, O., Appl. Phys. Lett. 64, 2511 (1994).CrossRefGoogle Scholar
10.Eom, C.B., Van Dover, R.B., Philips, J.M., Werder, D.J., Marshal, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., and Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993); Also see:CrossRefGoogle Scholar
Eom, C.B., Rao, R.A., Gan, Q., Wasa, K., and Werder, D.J., Integr. Ferroelectr. 21, 251 (1998).CrossRefGoogle Scholar
11.Ahn, C.H., Hammond, R.H., Geballe, T.H., Beasley, M.R., Triscone, J-M., Decroux, M., Fischer, Ø., Antognazza, L., and Char, K., Appl. Phys. Lett. 70, 206 (1997).CrossRefGoogle Scholar
12.de Keijser, M., Cillessen, J.F.M, Janssen, R.B.F, De Veirman, A.E.M, and de Leeuw, D.M., J. Appl. Phys. 79, 393 (1996).CrossRefGoogle Scholar
13.Movchan, B.A. and Demchishin, A.V., Phys. Met. Metallogr. 28, 83 (1969).Google Scholar
14.Bouchard, R.J. and Gilson, J.L., Mater. Res. Bull. 7, 873 (1972).CrossRefGoogle Scholar
15.Szymanik, B. and Edgar, A., Solid State Commun. 79, 355 (1991).CrossRefGoogle Scholar
16.van Loan, P.R., Ceram. Bull. 51, 231 (1972).Google Scholar
17.Donohue, P.C., Katz, L., and Ward, R., Inorg. Chem. 4, 306 (1965).CrossRefGoogle Scholar
18.Jia, Q.X., Chu, F., Adams, C.D., Wu, X.D., Hawley, M., Cho, J.H., Findikoglu, A.T., Foltyn, S.R., Smith, J.L., and Mitchell, T.E., J. Mater. Res. 11, 2263 (1996).CrossRefGoogle Scholar
19.Gu, M., Ping, W., Zheng, L., Lin, C., and Cao, Z., Thin Solid Films 288, 95 (1996).Google Scholar
20.Fukushima, N., Sano, K., Schimizu, T., Abe, K., and Komatsu, S., Appl. Phys. Lett. 73, 1200 (1998).CrossRefGoogle Scholar
21.Zheng, L., Koo, S.M., Kaur, D., Vergara, J., and Rao, K.V. (unpublished).Google Scholar
22.Björmander, C., Grishin, A.M., Moon, B.M., Lee, J., and Rao, K.V., Appl. Phys. Lett. 64, 3646 (1994).CrossRefGoogle Scholar
23.Yoo, I.K. and Desu, S.B., Mater. Sci. Eng. B 13, 319 (1992).CrossRefGoogle Scholar