Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T17:14:02.471Z Has data issue: false hasContentIssue false

Balance of graphite deposition and multishell carbon nanotube growth in the carbon arc discharge

Published online by Cambridge University Press:  31 January 2011

P. M. Ajayan
Affiliation:
Institut für Werkstoffwissenschaft, Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
Ph. Redlich
Affiliation:
Institut für Werkstoffwissenschaft, Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
M. Rühle
Affiliation:
Institut für Werkstoffwissenschaft, Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
Get access

Abstract

Except for atomistic models of individual carbon nanotube growth, there is still no precise understanding of the large scale deposition of carbon during the arc discharge. We study the microstructure of cathode deposits in detail using scanning electron microscopy, focusing on two distinct regimes found in the deposits having different large scale morphology. The shell grown circumferentially consists of extended graphite layers with preferred orientation, and the structure reveals close similarity to pyrolitic graphite. The core region is a porous assembly of nanotubes and nanoparticles. We conclude that closed nanostructures self-assemble from a dense carbon vapor, whereas pyrographitic shell grows by continuous deposition on exposed substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ebbesen, T. W., Annu. Rev. Mater. Sci. 24, 235 (1994).Google Scholar
2.Mintmire, J. W., Dunlop, B. I., and White, C. T., Phys. Rev. Lett. 68, 631 (1992).Google Scholar
3.Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
4.deHeer, W. A., Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).Google Scholar
5.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
6.Ebbesen, T. W. and Ajayan, P. M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
7.Ebbesen, T. W., Hiura, H., Fujita, J., Ochai, Y., Matsui, S., and Tanigaki, K., Chem. Phys. Lett. 209, 83 (1993).Google Scholar
8.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Hayashi, T., Chem. Phys. Lett. 204, 277 (1993).CrossRefGoogle Scholar
9.Dravid, V. P., Lin, X., Wang, Y., Wang, X. K., Yee, A., Ketterson, J. B., and Chang, R. P. H., Science 259, 1601 (1993).CrossRefGoogle Scholar
10.Taylor, G. H., Gerald, G. D. Fitz, Pang, L., and Wilson, M. A., J. Cryst. Growth 135, 157 (1994).Google Scholar
11.Harris, P. J. F., Tsang, S. C., Claridge, J. B., and Green, M. L. H., J. Chem. Soc. Faraday Trans. 90, 2799 (1994).Google Scholar
12.Colbert, D. T., Zhang, J., McClure, S. M., Nicolaev, P., Chen, Z., Hafner, J. H., Owens, D. W., Kotula, P. G., Karter, C. B., Weaver, J. H., Rinzler, A. G., and Smalley, R. E., Science 266, 1218 (1994).CrossRefGoogle Scholar
13.Gamaly, E. G. and Ebbesen, T. W., Phys. Rev. B 52, 2083 (1995).Google Scholar
14.Maiti, A., Brabec, C. J., Roland, C., and Bernholc, J., Phys. Rev. B 52, 14 850 (1995).Google Scholar
15.Guo, T., Nikolaev, P., Rinzler, A. G., Tomanek, D., Colbert, D. T., and Smalley, R. E., J. Phys. Chem. 99, 10694 (1995).Google Scholar
16.Byszewski, P., Ukalski, K., Mizera, E., and Kowalska, E., unpublished.Google Scholar
17.Iijima, S., Ajayan, P. M., and Ichihashi, T., Phys. Rev. Lett. 69, 3100 (1992).Google Scholar
18.Smalley, R. E., Mater. Sci. Eng. B 19, 1 (1993).Google Scholar
19.Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E., Science 269, 1550 (1995).Google Scholar
20.Finkelnburg, W. and Maecker, H., Handbuch der Physik, edited by Flügge, S. (Springer-Verlag, Berlin, 1956), Vol. XXII, p. 408.Google Scholar
21.Harvey, J., Clark, D., and Eastabrook, J. N., in Special Ceramics, edited by Popper, P. (Proc. Symp. Brit. Cer. Res. Assoc., Academic Press, London, 1963), p. 181.Google Scholar
22.Blackman, L. C. F., Saunders, G. A., and Ubbelohde, A. R., Proc. R. Soc. 264, 19 (1961).Google Scholar
23.Blackman, L. C. F. and Ubbelohde, A. R., Proc. R. Soc. 266, 20 (1962).Google Scholar
24.Popper, P., in Special Ceramics, edited by Popper, P. (Proc. Symp. Brit. Cer. Res. Assoc., Academic Press, London, 1963), p. 137.Google Scholar
25.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (Wiley, New York, 1976), p. 454.Google Scholar
26.Ebbesen, T. W., Ajayan, P. M., Hiura, H., and Tanigaki, K., Nature (London) 367, 519 (1994).Google Scholar
27.Bacon, R., J. Appl. Phys. 31, 283 (1960).CrossRefGoogle Scholar
28.Cermignani, W., Paulson, T. E., Onneby, C., and Pantano, C. G., Carbon 33, 367 (1995).Google Scholar
29.Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments (Springer Verlag, Berlin, Heidelberg, 1988), Chap. 1.Google Scholar
30.Iijima, S. and Ichihashi, T., Nature (London) 363, 603 (1993).CrossRefGoogle Scholar
31.Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vasquez, J., and Beyers, R., Nature (London) 363, 605 (1993).Google Scholar
32.Ajayan, P. M., Lambert, J. M., Bernier, P., Barbedette, L., Colliex, C., and Planeix, J. M., Chem. Phys. Lett. 215, 509 (1993).CrossRefGoogle Scholar
33.Gamaly, E. G. and Chadderton, L. T., Proc. R. Soc. London A 449, 381 (1995).Google Scholar