Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T07:18:41.984Z Has data issue: false hasContentIssue false

Autostoichiometric vapor deposition: Part I. Theory

Published online by Cambridge University Press:  03 March 2011

Ren Xu
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
Get access

Abstract

The possibility of an autostoichiometric vapor deposition is explored. Heterometal-organic complexes such as double alkoxides are potential candidate precursors for such deposition. Two reaction schemes, the hydrolysis-assisted pyrolysis and the hydrolysis-polycondensation of double alkoxides, are identified to be autostoichiometric reactions. A simple low-pressure apparatus is suggested for autostoichiometric vapor deposition. Mass-flow analysis allows for the identification of a nonstoichiometry factor K which can be used as a quantitative measure of the precursor's autostoichiometric capability.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xu, Y. H. and Mackenzie, J. D., Int. Ferroelectrics 1, 17 (1992).CrossRefGoogle Scholar
2Chour, K. W., Wang, G. D., and Xu, R., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S.B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), p. 65.Google Scholar
3Grove, A. S., Ind. & Eng. Chem. 58, 48 (1966).CrossRefGoogle Scholar
4Treybal, R. E., Mass-Transfer Operations (McGraw-Hill Book Co., New York, 1955), Chap. 3.Google Scholar
5Schlichting, H., Boundary Layer Theory (McGraw-Hill Book Co., New York, 1960), Chap. 7.Google Scholar
6Bradley, D. C., Mehrotra, R. C., and Gaur, D. P., Metal Alkoxides (Academic Press, London, 1978), Chap. 5.Google Scholar
7Chisholm, M. H., Inorganic Chemistry: Toward the 21st Century (American Chemical Society, Washington, DC, 1983), Chap. 16.CrossRefGoogle Scholar
8Beidell, W., Shklover, V., and Berke, H., Inorg. Chem. 31, 5561 (1992).CrossRefGoogle Scholar
9Purdy, A. P. and George, C. F., Inorg. Chem. 30, 1970 (1991).Google Scholar
10Campion, J. F., Payne, D. A., Chae, H. K., Maurin, J. K., and Wilson, S. R., Inorg. Chem. 30, 3245 (1991).CrossRefGoogle Scholar
11Huppertz, H. and Engl, W. L., IEEE Trans. Electron. Dev. ED–26, 658 (1979).CrossRefGoogle Scholar
12Levin, R. M. and Evans-Lutterodt, K., J. Vac. Sci. Technol. B 1, 54 (1983).CrossRefGoogle Scholar
13Becker, F. S., Pawlik, D., Anzinger, H., and Spitzer, A., J. Vac. Sci. Technol. B 5, 1555 (1987).CrossRefGoogle Scholar
14Desu, S. B., J. Am. Ceram. Soc. 72, 1615 (1989).CrossRefGoogle Scholar
15Bradley, D. C., Chem. Rev. 89, 1317 (1989).CrossRefGoogle Scholar
16Chour, K. W., Wang, G. D., and Xu, R., J. Mater. Res., submitted.Google Scholar
17Mehrotra, R. C., Agrawal, M. M., and Kapoor, P.N., J. Chem. Soc. A, 2673 (1968).CrossRefGoogle Scholar