Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T01:17:18.380Z Has data issue: false hasContentIssue false

Atomistic simulation of fracture in Ni3Al

Published online by Cambridge University Press:  31 January 2011

Hong-Xian Xie*
Affiliation:
Central Iron and Steel Research Institute, Beijing 100081, China
Chong-Yu Wang
Affiliation:
International Centre for Materials Physics, Academia Sinica, Shenyang 110016, China; Central Iron and Steel Research Institute, Beijing 100081, China; and Department of Physics, Tsinghua University, Beijing 100084, China
Tao Yu
Affiliation:
Central Iron and Steel Research Institute, Beijing 100081, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The molecular dynamics method has been used to simulate mode I cracking in Ni3Al. Close attention has been paid to the process of atomic configuration evolution of the cracks. The simulation results show that at low temperature, the Shockley partial dislocations are emitted before the initiation of the crack propagation, subsequently forming the pseudo-twins on (111) planes in crack-tip zone, and then the crack cleavage occurs. The emitting of the Shockley partial dislocations accompanies the crack cleavage during the simulation process. At the higher temperature, the blunting at the crack tip is caused by the [110] superdislocations emitted on (100) plane. The present work also shows that the dipole dislocations on (111) planes in the 1/2[110] dislocation core can be formed.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kelly, A.: Strong Solids Oxford University Press London, UK 1966 22Google Scholar
2Rice, J.R.Beltz, G.E.: The activation energy for dislocation nucleation at a crack. J. Mech. Phys. Solids 42, 333 1994CrossRefGoogle Scholar
3Rice, J.R.: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 1992CrossRefGoogle Scholar
4Rice, J.R.Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73 1974CrossRefGoogle Scholar
5Hirth, J.P.Lothe, J.: Theory of Dislocations Wiley New York 1968 201Google Scholar
6Zhou, S.J., Carlsson, A.E.Thomson, R.: Crack blunting effects on dislocation emission from cracks. Phys. Rev. Lett. 72, 852 1994CrossRefGoogle ScholarPubMed
7Korner Exhaustion of a [10-1](111) slip to explain the strength anomaly in Ni3(Al,Ti). Philos. Mag. A 63(3), 407 1991CrossRefGoogle Scholar
8Chou, C.T.Hirsch, P.B.: Computer simulation of motion screw dislocations in Ni3Al. Philos. Mag. A 68(6), 1097 1993CrossRefGoogle Scholar
9Devincre, B., Veyssière, P., Kubin, L.P.Saada, G.: A simulation of dislocation dynamics and of the flow stress anomaly in L12 alloys. Philos. Mag. A 75, 1263 1997CrossRefGoogle Scholar
10Ngan, A.H.W., Wen, M.Woo, C.H.: Atomistic simulations of Paidar–Pope–Vitek lock formation in Ni3Al. Comput. Mater. Sci. 29, 259 2004CrossRefGoogle Scholar
11Choi, Y.S., Dimiduk, D.M., Uchic, M.D.Parthasarathy, T.A.: Modelling plasticity of Ni3Al-based L12 intermetallic single crystals. I. Anomalous temperature dependence of the flow behaviour. Philos. Mag. 87, 1939 2007CrossRefGoogle Scholar
12Baluc, N.Schaublin, R.: Weak beam transmission electron imaging of superdislocation in ordered Ni3Al. Philos. Mag. A 74(1), 113 1996CrossRefGoogle Scholar
13Dao, M., Kad, B.K.Asaro, R.J.: Mechanism of intense failure in Ni3Al single crystals. Philos. Mag. A 75(2), 443 1997CrossRefGoogle Scholar
14Shan, Z.W., Wu, X., Liu, L., Yang, J.H.Xu, Y.B.: In situ transmission electron microscopy investigation of crack propagation in single crystal Ni3Al. Mater. Sci. Technol. 17, 1398 2001CrossRefGoogle Scholar
15Voter, A.F.Chen, S.P.: High temperature ordered intermetallic alloys in Characterization of Defects in Materials,, edited by R.W. Siegel, J.R. Weertman, and R. Sinclair (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175Google Scholar
16Shastry, V.Farkas, D.: Molecular statics simulation of fracture in α-iron. Mater. Sci. Eng. 4, 473 1996Google Scholar
17Angelo, J.E.Baskes, M.I.: Interfacial studies using EAM and MEAM. Interface Sci. 4, 47 1997CrossRefGoogle Scholar
18Farkas, D., Roqueta, D., Vilette, A.Ternes, K.: Atomistic simulations in ternary Ni–Ti–Al alloys. Modell. Simul. Mater. Sci. Eng. 4, 359 1996CrossRefGoogle Scholar
19Mishin, Y., Farkas, D., Mehl, M.J.Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393 1999CrossRefGoogle Scholar
20Cherne, F.J., Baskes, M.I.Deymier, P.A.: Properties of liquid nickel: A critical comparison of EAM and MEAM calculations. Phys. Rev. B 65, 024209 2001CrossRefGoogle Scholar
21Angelo, J.E., Moody, N.R.Baskes, M.I.: Trapping of hydrogen to lattice defects in nickel. Modell. Simul. Mater. Sci. Eng. 3, 289 1995CrossRefGoogle Scholar
22Zhu, T.Wang, C-Y.: Misfit dislocation networks in the γ/γt phase interface of a Ni-based single-crystal superalloy: Molecular dynamics simulations. Phys. Rev. B 72, 014111 2005CrossRefGoogle Scholar
23Veyssiere, P., Shimotomai, M.Beauchamp, P.: On the presence of superlattice intrinsic stacking faults in plastically deformed Ni3Al. Philos. Mag. A 51, 469 1985CrossRefGoogle Scholar
24Hemker, K.Mills, M.J.: Measurements of antiphase boundary and complex stacking fault energies in binary and B-doped Ni3Al using TEM. Philos. Mag. A 68, 305 1993CrossRefGoogle Scholar
25Karnthaler, H.P., Muhlbacher, E.T.Rentenberger, C.: The influence of the fault energies on the anomalous mechanical behaviour of Ni3Al alloys. Acta Mater. 44, 547 1996CrossRefGoogle Scholar
26Paxton, A.Sun, Y.G.: The role of planar fault energy in the yield anomaly in L12 intermetallics. Philos. Mag. A 78, 85 1998Google Scholar
27Schoeck, G., Kohlhammer, S.Fahnle, M.: Planar dissociations and recombination energy of [110] superdislocations in Ni3Al: Generalized Peierls model in combination with ab initio electron theory. Philos. Mag. Lett. 79, 849 1999CrossRefGoogle Scholar
28Kohlhammer, S., Fahnle, M.Schoeck, G.: The structure of [010] dislocations in Ni3Al. Scripta Mater. 39, 359 1998CrossRefGoogle Scholar
29Mishin, Y.: Atomistic modeling of the γ and γ′-phases of the Ni–Al system. Acta Mater. 52, 1451 2004CrossRefGoogle Scholar
30Hua, L., Rafii-Tabar, H.Cross, M.: Molecular dynamics simulation of fractures using an N-body potential. Philos. Mag. Lett. 75, 237 1997CrossRefGoogle Scholar
31Machova, A.Ackland, G.J.: Dynamic overshoot in α-iron by atomistic simulations. Model. Simul. Mater. Sci. Eng. 6, 521 1998CrossRefGoogle Scholar
32Allen, M.P.Tildesley, D.J.: Computer Simulation of Liquids Oxford University Press New York 1987 83Google Scholar