Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T12:52:01.788Z Has data issue: false hasContentIssue false

Atomic arrangement variations of 30° in-plane rotation domain boundaries in ZnO thin films grown on Si substrates due to thermal annealing

Published online by Cambridge University Press:  31 January 2011

J.Y. Lee
Affiliation:
Department of Materials Science and Engineering, KAIST, Daejeon 305-701, South Korea
T.W. Kim*
Affiliation:
Division of Electronics and Computer Engineering, Hanyang University, Seoul 133-791, South Korea
W.K. Choi
Affiliation:
Thin Film Material Research Center, Korea Institute of Science and Technology, Seoul 136-701, South Korea
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-resolution transmission electron microscopy (HRTEM) images of annealed ZnO thin films showed the domain boundaries of a (0) plane with a transition zone and a (1) plane without a transition zone. The 30° in-plane rotation domain boundaries were formed in the ZnO thin films because the angle of the c-axis was tilted 3.5° in comparison with that of neighboring 30° in-plane rotation domains to reduce the misfit strain energy. The atomic arrangement variations of 30° in-plane rotation domain boundaries in ZnO thin films grown on Si substrates due to thermal annealing are described.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Soki, T., Hatanaka, Y., and Look, D.C.: ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett. 76, 3257 (2000)Google Scholar
2Service, R.F.: Will UV lasers beat the blues? Science 276, 895 (1997)CrossRefGoogle Scholar
3Xu, W.Z., Ye, Z.Z., Zeng, Y.J., Zhu, L.P., Zhao, B.H., Jiang, L., Lu, J.G., and He, H.P.: ZnO light-emitting diode grown by plas-ma-assisted metal organic chemical vapor deposition. Appl. Phys. Lett. 88, 173506 (2006)CrossRefGoogle Scholar
4Inoue, Y., Okamoto, M., and Morimoto, J.: Enhancement of green photoluminescence from ZnO: Pr powders. J. Mater. Res. 21, 1476 (2006)CrossRefGoogle Scholar
5Yadav, H.K., Sreenivas, K., Gupta, V., Singh, S.P., and Katiyar, B.S.: Effect of surface defects on the visible emission from ZnO nano-particles. J. Mater. Res. 22, 2404 (2007)CrossRefGoogle Scholar
6He, J.H., Hsin, C.L., Liu, J., Chen, L.J., and Wang, Z.L.: Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19, 781 (2007)CrossRefGoogle Scholar
7Park, Y.R. and Kim, Y.S.: Organic light-emitting diodes with hydrogenated In-doped ZnO thin films as transparent conductive electrodes. J. Mater. Res. 23, 1674 (2008)CrossRefGoogle Scholar
8Koteeswara, N. Reddy, Ahsanulhaq, Q., Kim, J.H., and Hahn, Y.B.: Behavior of n-ZnO nanorods/p-Si heterojunction devices at higher temperatures. Appl. Phys. Lett. 92, 043127 (2008)CrossRefGoogle Scholar
9Allenic, A., Pan, X.Q., Che, Y., Hu, Z.D., and Liu, B.: Violet luminescence in phosphorus-doped ZnO epitaxial films. Appl. Phys. Lett. 92, 022107 (2008)CrossRefGoogle Scholar
10Lee, K., Kim, J.H., and Im, S.: Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric. Appl. Phys. Lett. 88, 023504 (2006)CrossRefGoogle Scholar
11Ogata, K., Kawanishi, T., Maejima, K., Sakurai, K., Fujita, Sz., and Fujita, Sg.: ZnO growth using homoepitaxial technique on sapphire and Si substrates by metalorganic vapor phase epitaxy. J. Cryst. Growth 237, 553 (2002)CrossRefGoogle Scholar
12Oba, F., Ohta, H., Sato, Y., Hosono, H., Yamamoto, T., and Ikuhara, Y.: Atomic structure of [0001]-tilt grain boundaries in ZnO: A high-resolution TEM study of fiber-textured thin films. Phys. Rev. B 70, 125415 (2004)CrossRefGoogle Scholar
13Sato, Y., Mizoguchi, T., Oba, F., Yodogawa, M., Yamamoto, T., and Ikuhara, Y.: Atomic and electronic structure of [0001]/(-1-230) S7 symmetric tilt grain boundary in ZnO bicrystal with linear current-voltage characteristic. J. Mater. Sci. 40, 3059 (2005)CrossRefGoogle Scholar
14Shin, J.W., Lee, J.Y., No, Y.S., Kim, T.W., and Choi, W.K.: Correlation between the atomic structures and the misorientation angles of [0001]-tilt grain boundaries at triple junctions in ZnO thin films grown on Si substrates. Appl. Phys. Lett. 89, 101904 (2006)CrossRefGoogle Scholar
15Oba, F., Tanaka, I., Nishitani, S.R., Adachi, H., Slater, B., and Gay, D.H.: Geometry and electronic structure of [0001]/(-1-230) S7 symmetric tilt grain boundary in ZnO. Philos. Mag. A 80, 1567 (2000)CrossRefGoogle Scholar
16Shin, J.W., Lee, J.Y., No, Y.S., Jung, J.H., Kim, T.W., and Choi, W.K.: Atomic arrangement variations of [0001]-tilt grain boundaries in ZnO thin films grown on p-Si substrates due to thermal treatment. Appl. Phys. Lett. 90, 181907 (2007)CrossRefGoogle Scholar
17Chen, Y., Bagnall, D.M., Koh, H.J., Park, K.T., Hiraga, K., Zhu, Z., and Yao, T.: Plasma-assisted molecular-beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. J. Appl. Phys. 84, 3912 (1998)CrossRefGoogle Scholar
18Fons, P., Iwata, K., Yamada, A., Matsubara, K., Niki, S., Nakahara, K., Tanabe, T., and Takasu, H.: Uniaxial locked epitaxy of ZnO on the a face of sapphire. Appl. Phys. Lett. 77, 1801 (2000)CrossRefGoogle Scholar
19Zhang, B.P., Wakatsuki, K., Binh, N.T., Usami, N., and Segawa, Y.: Effects of growth temperature on the characteristics of ZnO epitaxial films deposited by metalorganic chemical vapor deposition. Thin Solid Films 449, 12 (2004)CrossRefGoogle Scholar
20Liu, C., Chang, S.H., Noh, T.W.H., Abouzaid, M., Ruterana, P., Lee, H.H., Kim, D.W., and Chung, J.S.: Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire (0001) substrates. Appl. Phys. Lett. 90, 011906 (2007)CrossRefGoogle Scholar
21Liu, Y.Z., Ying, M.J., Du, X.L., Jia, J.F., Xue, Q.K., Han, X.D., and Zhang, Z.: The 30° rotation domains in wurtzite ZnO films. J. Cryst. Growth 290, 631 (2006)CrossRefGoogle Scholar
22Choi, J.H., Tabata, H., and Kawai, T.: Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition. J. Cryst. Growth 226, 493 (2001)CrossRefGoogle Scholar
23Thompson, C.V.: Structure evolution during processing of poly-crystalline films. Annu. Rev. Mater. Sci. 30, 159 (2000)CrossRefGoogle Scholar
24Shin, J.W., Lee, J.Y., No, Y.S., Kim, T.W., and Choi, W.K.: Effects of thermal treatment on the formation of the columnar structures in ZnO thin films grown on p-Si (100) substrates. J. Appl. Phys. 100, 013526 (2006)CrossRefGoogle Scholar
25Shin, J.W., Lee, J.Y., No, Y.S., Kim, T.W., Choi, W.K., and Jin, S.: The formation mechanism of periodic Zn nanocrystal arrays embedded in an amorphous layer by rapid electron beam irradiation. Nanotechnology 19, 295303 (2008)CrossRefGoogle Scholar
26Edington, J.W.: Electron Diffraction in the Electron Microscope, Monograph 2 in Practical Electron Microscopy in Materials Science (Philips Technical Library, Eindhoven, The Netherlands, 1975).Google Scholar