Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T17:29:10.086Z Has data issue: false hasContentIssue false

Atmospheric pressure chemical vapor deposition of aluminum nitride thin films at 200–250 °C

Published online by Cambridge University Press:  31 January 2011

Roy G. Gordon*
Affiliation:
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
David M. Hoffman*
Affiliation:
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
Umar Riaz
Affiliation:
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
*
a)Address correspondence to these authors.
a)Address correspondence to these authors.
Get access

Abstract

The atmospheric pressure chemical vapor deposition of aluminum nitride coatings using hexakis(dimethylamido)dialuminum, Al2(NMe2)6, and ammonia precursors is reported. The films were characterized by ellipsometry, transmission electron microscopy, x-ray photoelectron spectroscopy, and Rutherford backscattering spectrometry. The films were deposited at 200–250 °C with growth rates up to 1000 Å/min. They displayed good adhesion to silicon, vitreous carbon, and glass substrates and were chemically inert, except to concentrated hydrofluoric acid. Rutherford backscattering analysis showed that the N/Al ratio ranged from 1.1 to 1.2. Refractive indexes were 1.8–1.9. The films were smooth and amorphous by transmission electron microscopy.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Neuberger, M., Handbook of Electronic Materials (IFI/Plenum, New York, 1971), Vol. 2, pp. 1820.Google Scholar
2Shiosaki, T., Yamamoto, T., Oda, T., and Kawabata, A., Appl. Phys. Lett. 36, 643 (1980).CrossRefGoogle Scholar
3Interrante, L. V., Lee, W., McConnell, M., Lewis, N., and Hall, E., J. Electrochem. Soc. 136, 472 (1989).CrossRefGoogle Scholar
4Fathimulla, A. and Lakhani, A. A., J. Appl. Phys. 54, 4586 (1983).CrossRefGoogle Scholar
5Chu, T. L. and Kelm, R. W., Jr., J. Electrochem. Soc. 122, 995 (1975).Google Scholar
6Pauleau, Y., Bouteville, A., Hantzpergue, J. J., Remy, J. C., and Cachard, A., J. Electrochem. Soc. 129, 1045 (1982).Google Scholar
7Manasevit, H. M., Erdmann, F. M., and Simpson, W. I., J. Electrochem. Soc. 118, 1864 (1971).Google Scholar
8Interrante, L. V., Carpenter, L. E., Whitmarsh, C., and Lee, W., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 359.Google Scholar
9Boyd, D. C., Haasch, R. T., Mantell, D. R., Schulze, R. K., Evans, J. F., and Gladfelter, W. L., Chem. Mater. 1, 119 (1989).CrossRefGoogle Scholar
10Fix, R. M., Gordon, R. G., and Hoffman, D. M., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 357.Google Scholar
11Fix, R. M., Hoffman, D. M., and Gordon, R. G., Abstracts of Papers, 199th National Meeting of the American Chemical Society (American Chemical Society, Washington, DC, 1990), INORG144.Google Scholar
12Waggoner, K. M., Olmstead, M. M., and Power, P. P., Polyhedron 9 (2/3), 257 (1990).CrossRefGoogle Scholar
13Kurtz, S. R. and Gordon, R. G., Thin Solid Films 140, 277 (1986).CrossRefGoogle Scholar
14Takahashi, Y., Yamashita, K., Motojima, S., and Sugiyama, K., Surf. Sci. 86, 238 (1979).Google Scholar
15Powell, C. J. and Seah, M. P., J. Vac. Sci. Technol. A8, 735 (1990).Google Scholar
16Ohuchi, F. S. and French, R. H., J. Vac. Sci. Technol. A6, 1695 (1988).CrossRefGoogle Scholar