Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T05:47:42.399Z Has data issue: false hasContentIssue false

Application of the embedded atom method to Ni3Al

Published online by Cambridge University Press:  31 January 2011

S. M. Foiles
Affiliation:
Sandia National Laboratories. Livermore, California 94550
M. S. Daw
Affiliation:
Sandia National Laboratories. Livermore, California 94550
Get access

Abstract

The embedded atom method [M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984) used to calculate phase stability, lattice vibrational frequencies, point defect properties, antiphase boundary energies, and surface energies and relaxations for Ni3Al. The empirical embedding functions and core-core repulsions used by this method are obtained. The equilibrium phases for the Ni-rich half of the composition range of Ni–Al are determined for 1000 K and compared with experiment. The elastic constants and vibrational modes of Ni3Al are calculated and the elastic constants are compared with experiment. The formation energy, formation volume, and migration energies of vacancies are computed, and it is found that the formation energy of vacancies on the Ni sublattice is less than that on the Al sublattice. The (100) antiphase boundary is shown to be significantly lower in energy than the (111) antiphase boundary. The surface energies and atomic relaxations of the low index faces are computed, and it is shown that for the (100) and (110) faces that the preferred surface geometry corresponds to the bulk lattice with the mixed composition plane exposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958).CrossRefGoogle Scholar
2Thorton, P. H., Davis, R. G., and Johnson, T. L., Metall. Trans. 1, 207 (1970).CrossRefGoogle Scholar
3Aitken, E. A., Intermetallic Compounds, edited by Westbrook, J. H. (Wiley, New York, 1967), pp. 491515.Google Scholar
4Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).CrossRefGoogle Scholar
5Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
6Daw, M. S., Surf. Sei. Lett. 166, L161 (1986).Google Scholar
7Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
8Daw, M. S., Baskes, M. I., Bisson, C. L., and Wolfer, W. G., in the proceedings of The Special Symposium on Modelling Environmental Effects on Crack Initiation and Propagation, TMS-AIME, Toronto, Canada, October 1984.Google Scholar
9Daw, M. S. and Hatcher, R. L., Solid State Comm. 56, 697 (1985).CrossRefGoogle Scholar
10Foiles, S. M., Phys. Rev. B 32, 3409 (1985).CrossRefGoogle Scholar
11Foiles, S. M., Phys. Rev. B 32, 7685 (1985).CrossRefGoogle Scholar
12Felter, T. E., Foiles, S. M., Daw, M. S., and Stulen, R. H., Surf. Sci. Lett. 171, L379 (1986).Google Scholar
13Johnson, R. A., Phys. Rev. B 6, 2094 (1972).CrossRefGoogle Scholar
14Daw, M. S. (in preparation).Google Scholar
15Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
16Clementi, E. and Roetti, C., At. Data Nucl. Data Tables 14, 177 (1974).CrossRefGoogle Scholar
17Fuchs, K., Proc. R. Soc. London, Ser. A 153, 622 (1936); 157, 444 (1936).Google Scholar
18Englert, A., Tompa, H., and Bullough, R., Fundamental Aspects of Dislocation Theory (National Bureau of Standards, Washington, DC, 1970).Google Scholar
19Wycisk, W. and Feller-Kneipmeier, M., J. Nucl. Mater. 69&70, 616 (1978).CrossRefGoogle Scholar
20Balluffi, R. W., J. Nucl. Mater. 69&70, 240 (1978).CrossRefGoogle Scholar
21Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., and Kelly, K. K., Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, OH, 1973).Google Scholar
22Wood, W. W.J. Chem. Phys. 52, 729 (1970).CrossRefGoogle Scholar
23Yoo, M. H. (private communication). The experimental values at T= 0 K are obtained by scaling the room temperature values re-ported by Kayser, F. X. and Stassis, C., Phys. Status Solidi A 64, 335 (1981). The scaling was accomplished by comparison to the tem- perature dependence of the elastic constants as measured by K. Ono and R. Stern, Trans. AIME 245, 171 (1969).Google Scholar
24Wang, T., Shimotomai, M., and Doyama, M., J. Phys. F 14, 37 (1984).CrossRefGoogle Scholar
25Dasgupta, A., Smedskjaer, L. C., Legnini, D. G., and Siegel, R. W., Mater. Lett. 3, 457 (1985).CrossRefGoogle Scholar
26Pope, D. P. and Ezz, S. S., Int. Metall. Rev. 29, 3 (1984).CrossRefGoogle Scholar
27Kear, B. H. and Wilsdorf, H. G. F., Trans. TMS-AIME 224, 382 (1962).Google Scholar
28Takeuchi, S., and Kuramoto, E., Acta Metall. 21, 415 (1973).CrossRefGoogle Scholar
29Horton, J. A. and Liu, C. T., Acta Metall. 33, 2191 (1985).CrossRefGoogle Scholar
30Davis, H. L. and Noonan, J. R., Phys. Rev. Lett. 54, 566 (1985).CrossRefGoogle Scholar
31Sondericker, D., Jona, F., Moruzzi, V. L., and Marcus, P. M., Solid StateComm. 53, 175 (1985).Google Scholar
32Sondericker, D., Jona, F., and Marcus, P. M., Phys. Rev. B 33, 900 (1986).CrossRefGoogle Scholar