Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T20:06:03.481Z Has data issue: false hasContentIssue false

Anisotropies in the electrical properties of rod-like aggregates of liquid crystalline phthalocyanines: Direct current conductivities and field-effect mobilities

Published online by Cambridge University Press:  03 March 2011

Carrie L. Donley
Affiliation:
Department of Chemistry, University of Arizona, Tucson, Arizona 85721
Wei Xia
Affiliation:
Department of Chemistry, University of Arizona, Tucson, Arizona 85721
Britt Minch
Affiliation:
Department of Chemistry, University of Arizona, Tucson, Arizona 85721
Anthony Drager
Affiliation:
Department of Chemistry, University of Arizona, Tucson, Arizona 85721
Samir K. Cherian
Affiliation:
Department of Optical Sciences and Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721
Lynn LaRussa
Affiliation:
Department of Optical Sciences and Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721
Bernard Kippelen
Affiliation:
Department of Optical Sciences and Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721
Benoit Domercq
Affiliation:
Department of Optical Sciences and Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721
David L. Mathine*
Affiliation:
Department of Optical Sciences and Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721
David F. O’Brien
Affiliation:
Department of Chemistry, University of Arizona, Tucson, Arizona 85721
Neal R. Armstrong*
Affiliation:
Department of Chemistry, University of Arizona, Tucson, Arizona 85721
*
d)Address all correspondence to these authors. e-mail: [email protected]
d)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The direct current (dc) conductivities and organic field-effect transistor (OFET) characteristics of a class of octa-substituted liquid crystalline (discotic mesophase) phthalocyanines (Pcs) are discussed. These molecules self-organize into columnar aggregates with large coherence lengths (up to approximately 300 nm). Langmuir–Blodgett films of these molecules were horizontally transferred to either interdigitated microelectrodes (IME) or OFET substrates, so that current flow could be measured either parallel or perpendicular to the column axis. Twenty-eight bilayer films of these Pcs on the IME substrates showed anisotropies in dc conductivity up to 50:1, whereas similar Pc films showed anisotropies in field effect mobilities of approximately 10:1, for a variety of W/L ratios (source/drain dimensions and spacing). Field-effect mobilities of 1 to 5 × 10-6 cm2·V-1·s-1 were determined from OFET measurements, along the Pc column axis, whereas charge mobilities measured from the space charge limited current regime on the IME substrates were in the range of 10-4 cm2·V-1·s-1. Conductive tip atomic force microscopy measurements on the apprximately 500-nm length scale showed that the conductivity anisotropy can be as high as 1000:1 when the Pc columns are intimately contacted to an adjacent Au bond pad.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.van Craats, A.M. de and Warman, J.M.: Adv. Mater. 13, 130 (2001).3.0.CO;2-L>CrossRefGoogle Scholar
2.van Craats, A.M. de, Warman, J.M., Fechtenkotter, J.M.A., Brand, J.D., Harbison, M.A. and Mullen, K.: Adv. Mater. 11, 1469 (1999).3.0.CO;2-K>CrossRefGoogle Scholar
3.van Craats, A.M. de, Warman, J.M., Mullen, K., Geerts, Y. and Brand, J.D.: Adv. Mater. 10, 36 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
4.van Craats, A.M. de, Siebbeles, L.D.A., Bleyl, I., Haarer, D., Berlin, Y.A., Zharikov, A.A. and Warman, J.M.: J. Phys. Chem. B 102, 9625 (1998).CrossRefGoogle Scholar
5.van Craats, A.M. de, Warman, J.M., Hasebe, H., Naito, R. and Ohta, K.: J. Phys. Chem. B 101, 9224 (1997).Google Scholar
6.Schmidt-Mende, L., Watson, M., Mullen, K. and Friend, R.H.: Molecular Crystals and Liquid Crystals 396, 73 (2003).CrossRefGoogle Scholar
7.Petritsch, K., Dittmer, J.J., Marseglia, E.A., Friend, R.H., Lux, A., Rozenberg, G.G., Moratti, S.C. and Holmes, A.B.: Sol. Energy Mater. Sol. Cells 61, 63 (2000).Google Scholar
8.Samori, P., Severin, N., Mullen, K. and Rabe, J.P.: Adv. Mater. 12, 579 (2000).Google Scholar
9.Eichhorn, H.: J. Porphyrins Phthalocyanines 4, 88 (2000).Google Scholar
10.Tracz, A., Jeszka, J.K., Watson, M.D., Pisula, W., Mullen, K. and Pakula, T.: J. Am. Chem. Soc. 125, 1682 (2003).Google Scholar
11.Bunk, O., Nielsen, M.M., Solling, T.I., van Craats, A.M. de and Stutzmann, N.: J. Am. Chem. Soc. 125, 2252 (2003).CrossRefGoogle Scholar
12.Tans, S.J., Miedema, R.G., Geerligs, L.J., Dekker, C., Wu, J., Neher, D. and Wegner, G.: Nanotechnology 14, 1043 (2003).CrossRefGoogle Scholar
13.Gattinger, P., Rengel, H., Neher, D., Gurka, M., Buck, M., van Craats, A.M. de and Warman, J.M.: J. Phys. Chem. B 103, 3179 (1999).CrossRefGoogle Scholar
14.Silerova, R., Kalvoda, L., Neher, D., Ferencz, A., Wu, J. and Wegner, G.: Chem. Mater. 10 2284 ((1998 )).Google Scholar
15.Fox, M.A., Grant, J.V., Melamed, D., Torimoto, D.T., Liu, C.Y. and Bard, A.J.: Chem. Mater. 10, 1771 (1998).CrossRefGoogle Scholar
16.Liu, C-Y. and Bard, A.J.: Acc. Chem. Res. 32, 235 (1999).CrossRefGoogle Scholar
17.Donley, C.L., Xia, W., Minch, B.A., Zangmeister, R.A.P., Drager, A.S., Nebesny, K., O’Brien, D.F. and Armstrong, N.R.: Langmuir 19, 6512 (2003).Google Scholar
18.Zangmeister, R.A.P., O’Brien, D.F. and Armstrong, N.R.: Adv. Func. Mater. 12, 179 (2002).3.0.CO;2-A>CrossRefGoogle Scholar
19.Zangmeister, R.A.P., Smolenyak, P.E., Drager, A.S., O’Brien, D.R. and Armstrong, N.R.: Langmuir 17, 7071 (2001).CrossRefGoogle Scholar
20.Smolenyak, P., Peterson, R., Nebesny, K., Torker, M., O’Brien, D.F. and Armstrong, N.R.: J. Am. Chem. Soc. 121, 8628 (1999).Google Scholar
21.Torsi, L., Dodabalapur, A., Rothberg, L.J., Fung, A.W.P. and Katz, H.E.: Science 272, 1462 (1996).CrossRefGoogle Scholar
22.Bao, Z., Lovinger, A.J. and Dodabalapur, A.: Appl. Phys. Lett. 69, 3066 (1996).Google Scholar
23.Katz, H.E. and Bao, Z.: J. Phys. Chem. B 104, 671 (2000).CrossRefGoogle Scholar
24.Rogers, J.A., Dodabalapur, A., Bao, Z. and Katz, H.E.: Appl. Phys. Lett. 75, 1941 (1999).Google Scholar
25.Chwang, A.B. and Frisbie, C.D.: J. Appl. Phys. 90, 1342 (2001).Google Scholar
26.Kelley, T.W. and Frisbie, C.D.: J. Phys. Chem. B 105, 4538 (2001).Google Scholar
27.Seshadri, K. and Frisbie, C.D.: Appl. Phys. Lett. 78, 993 (2001).Google Scholar
28.Chwang, A.B. and Frisbie, C.D.: J. Phys. Chem. B 104, 12202 (2000).CrossRefGoogle Scholar
29.Granstrom, E.L. and Frisbie, C.D.J. Phys. Chem. B 103, 8842 (1999).Google Scholar
30.Dimitrakopoulos, C.D. and Malenfant, P.R.L.: Adv. Mater. 14, 99 (2002).Google Scholar
31.Horowitz, G.: Adv. Mater. 10, 365 (1998).Google Scholar
32.Horowitz, G., Hajlaoui, R., Bouchriha, H., Bourguiga, R. and Hajlaoui, M.: Adv. Mater. 10, 923 (1998).3.0.CO;2-W>CrossRefGoogle Scholar
33.Klauk, H. and Jackson, T.N.: Solid State Technol. 43, 63 (2000).Google Scholar
34.Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L.S., Sheraw, C.D., Nichols, J.A. and Jackson, T.N.Solid-State Electron. 47, 297 (2003).Google Scholar
35.Zhang, Y., Petta, J.R., Ambily, S., Shen, Y., Ralph, D.C. and Malliaras, G.G.: Adv. Mater. 15, 1632 (2003).CrossRefGoogle Scholar
36.Drager, A.S. and O’Brien, D.F.: J. Org. Chem. 65, 2257 (2000).Google Scholar
37.Zangmeister, R.A.P. Ph.D. Thesis, University of Arizona (2001).Google Scholar
38.Donley, C.L. Ph.D. Thesis, University of Arizona (2003).Google Scholar
39.Gutman, F.: Organic Semiconductors (John Wiley & Sons, New York, 1967).Google Scholar
40.Wright, J.D., Molecular Crystals(Cambridge University Press, New York, 1995), pp. 144158.Google Scholar
41.Piris, J., Debije, M.G., Stutzmann, N., van Craats, A.M. de, Watson, M.D., Müllen, K. and Warman, J.M.: Adv. Mater. 15, 1736 (2003).CrossRefGoogle Scholar
42.Simon, J. and André, J.-J., Molecular Semiconductors (Springer-Verlag, New York, 1985), pp. 5359.CrossRefGoogle Scholar
43.CRC Handbook of Chemistry and Physics, 71st ed. (CRC Press, Boca Raton, 1990).Google Scholar
44.Necliudov, P.V., Shur, M.S., Gundlach, D.J. and Jackson, T.N.Solid-State Electron. 47, 259 (2003).Google Scholar
45.Bürgi, L., Sirringhaus, H. and Friend, R.H.: Appl. Phys. Lett. 80, 2913 (2002).Google Scholar
46.Meijer, E.J., Gelinck, G.H., van Veenendaal, E., Huisman, B-H., de Leeuw, D.M. and Klapwijk, T.M.: Appl. Phys. Lett. 82, 4576 (2003).CrossRefGoogle Scholar
47.Pankow, J.W., Arbour, C., Dodelet, J-P., Collins, G.E. and Armstrong, N.R.: J. Phys. Chem. 97, 8485 (1993).CrossRefGoogle Scholar
48.Zhivkov, I., Nešp˚urek, S. and Schauer, F.: Adv. Mater. Opt. Electron 9, 175 (1999).Google Scholar
49.Ahmad, A. and Collins, R.A.: Thin Solid Films 217, 75 (1992).Google Scholar
50.Ferencz, A., Armstrong, N.R. and Wegner, G.: Macromolecules 27, 1517 (1994).Google Scholar
51.Katz, H.E., Johnson, J., Lovinger, A.J. and Li, W.J.: J. Am. Chem. Soc. 122, 7787 (2000).Google Scholar
52.Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W. and Weber, W.: J. Appl. Phys. 92, 5259 (2002).Google Scholar
53.Kelley, T.W., Boardman, L.D., Dunbar, R.D., Muyres, D.V., Pellerite, M.J. and Smith, T.P.: J. Phys. Chem. B 107, 5877 (2003).Google Scholar
54.Lin, Y.Y., Gundlach, D.J., Nelson, S.F. and Jackson, T.N.: IEEE Elect. Dev. Lett. 18, 606 (1997).CrossRefGoogle Scholar
55.Salleo, A., Chabinyc, M.L., Yang, M.S. and Street, R.A.: Appl. Phys. Lett. 81, 4383 (2002).Google Scholar
56.Wang, G.Z., Luo, Y. and Beton, P.H.: Appl. Phys. Lett. 83, 3108 (2003).Google Scholar
57.Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H.E. and Marks, T.J.: J. Am. Chem. Soc. 125, 9414 (2003).Google Scholar
58.Meng, H., Zheng, J., Lovinger, A.J., Wang, B.C., Van Patten, P.G. and Bao, Z.N.: Chem. Mater. 15, 1778 (2003).Google Scholar