Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T18:02:24.770Z Has data issue: false hasContentIssue false

Anisotropic growth morphology and platelet formation in large grain Y–Ba–Cu–O grown by seeded peritectic solidification

Published online by Cambridge University Press:  31 January 2011

Wai Lo
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, United Kingdom
D. A. Cardwell
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, United Kingdom
J. C. L. Chow
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, United Kingdom
Get access

Abstract

The characteristic platelet-like structure of large grain superconducting Y–Ba–Cu–O fabricated using peritectic solidification techniques has been documented widely as a key microstructural feature of this material. The platelet formation mechanism is investigated via a detailed comparison of the difference in morphology of YBa2Cu3O7–δ (123) growth fronts propagating along different lattice directions. The development of YBa2Cu3O7–δ dendrites between the growth front and local Y2BaCuO5 (211) particles is observed to be a key feature of the growth mechanism along all directions. Dendrites broaden rapidly for growth fronts propagating along the c-axis due to the enhanced growth rate of Y–Ba–Cu–O in the a-b plane to yield a uniform, regular growth morphology. Dendrite broadening is inhibited for grain growth along the a-b directions, however, due to the slower growth rate along the c-axis, which yields an irregular extended growth front. Growth along the a/b direction commonly results in the formation of regions consisting of 123 dendrites which may connect 211 particles. Continued solidification of the 123 phase in such regions results in the development of platelet structures perpendicular to the crystallographic c-axis in the YBa2Cu3O7–δ phase matrix which may impede the flow of current through the grain in the superconducting state.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fukuyama, H., Seki, K., Takizawa, T., Endou, S., Murakami, M., Takaichi, H., and Koshizuka, N., in Advances in Superconductivity V, edited by Bando, Y. and Yamauchi, H. (Proc. 5th Int. Symp. Supercond. Springer-Verlag, Tokyo, Japan, 1993), p. 1313.CrossRefGoogle Scholar
2.Takahata, R., Ueyama, H., and Kubo, A., in Advances in Superconductivity V, edited by Bando, Y. and Yamauchi, H. (Proc. 5th Int. Symp. Supercond. Springer-Verlag, Tokyo, Japan, 1993), p. 1309.CrossRefGoogle Scholar
3.Moon, F. C. and Chang, P. Z., Appl. Phys. Lett. 56, 22 (1990).CrossRefGoogle Scholar
4.Decher, R., Peters, P. N., Sisk, R. C., Urban, E. W., Vlasse, M., and Rao, D. K., Appl. Supercond. 1, 1265 (1993).CrossRefGoogle Scholar
5.Moon, F. C., Chang, P. Z., Hojaji, H., Barkatt, A., and Thorpe, A. N., Jpn. J. Appl. Phys. 29, 1257 (1990).CrossRefGoogle Scholar
6.Chu, W. K., Ma, K. B., McMichael, C. K., and Lamb, M. A., Appl. Supercond. 1, 1259 (1993).CrossRefGoogle Scholar
7.Strasik, M., Day, A., Garrigus, D., McCrary, K., and T.Luhman, presented at European Conference in Applied Superconductivity, Edinburgh, 3–7 July (1995).Google Scholar
8.Murakami, M., Appl. Supercond. 1, 1157 (1993).CrossRefGoogle Scholar
9.Bean, C. P., Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
10.Lee, D. F., Selvamanikam, V., and Salama, K., Physica C 165, 480 (1990).Google Scholar
11.Murakami, M., Kotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
12.Sengupta, S., Shi, D., Wang, Z., Biondo, C., Balachadran, U., and Goretta, K. C., Physica C 199, 43 (1992).CrossRefGoogle Scholar
13.Chakrapani, V., Balkin, D., and McGinn, P., Appl. Supercond. 1, 71 (1993).CrossRefGoogle Scholar
14.Lepropre, M., Mont, I., Delamare, M. P., Hervieu, M., Simon, Ch., Provost, J., Desgardin, G., Raveau, B., Barbut, J. M., Bourgault, D., and Braithwaite, D., Cryogenics 34, 63 (1994).CrossRefGoogle Scholar
15.Matthess, D. N., Cochrane, J. W., and Russell, G. J., Physica C 249, 255 (1995).CrossRefGoogle Scholar
16.Lo, Wai, Cardwell, D. A., Dewhurst, C. D., and Dung, S. L., J. Mater. Res. 11, 786 (1996).CrossRefGoogle Scholar
17.Yan, Y., Cardwell, D. A., Campbell, A. M., and Stobbs, W. M., J. Mater. Res. 11, 2990 (1996).CrossRefGoogle Scholar
18.Jin, S., Kammlott, G. W., Tiefel, T. H., Kodas, T. T., Ward, T. L., and Kroeger, D. M., Physica C 181, 57 (1991).CrossRefGoogle Scholar
19.Alexander, K. B., Goyal, A., Kroeger, D. M., Selvamanickam, V., and Salama, K., Phys. Rev. B 45, 5622 (1992).CrossRefGoogle Scholar
20.Ayache, J., Odier, P., and Pellerin, N., Supercond. Sci. Technol. 7, 655 (1994).CrossRefGoogle Scholar
21.Bateman, C. A., Zhang, J., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
22.Cima, M., Flemings, M., Figucredo, A., Nakade, M., Ishii, H., Brody, H., and Haggerty, J., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
23.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).CrossRefGoogle Scholar
24.Frangi, F., Higuchi, T., Deguchi, M., and Murakami, M., J. Mater. Res. 10, 2241 (1995).CrossRefGoogle Scholar
25.Meng, R. L., Gao, L., Gautier-Picard, P., Ramirez, D., Sun, Y. Y., and Chu, C. W., Physica C 232, 337 (1994).CrossRefGoogle Scholar
26.Sawano, K., Morita, M., Tanaka, M., Sasaki, T., Kimura, K., Takebayashi, S., Kimura, M., and Miyamoto, K., Jpn. J. Appl. Phys. 30, L1157 (1991).CrossRefGoogle Scholar
27.Schmitz, G. J., Laakmann, J., Wolters, Ch., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Gonert, P., J. Mater. Res. 8, 2774 (1993).CrossRefGoogle Scholar
28.Lo, Wai, Cardwell, D. A., Dung, S-L., and Barter, R. G., IEEE Trans. Appl. Supercond. 5, 1619 (1995).CrossRefGoogle Scholar
29.Lo, Wai, Cardwell, D. A., Dung, S-L., and Barter, R. G., J. Mater. Res. 11, 39 (1996).CrossRefGoogle Scholar
30.Lo, Wai, Cardwell, D. A., Dung, S-L., and Barter, R. G., J. Mater. Sci. 30, 3995 (1995).CrossRefGoogle Scholar
31.Nakamura, Y., Furuya, K., Izumi, T., and Shiohara, Y., J. Mater. Res. 9, 1350 (1994).CrossRefGoogle Scholar
32.Wolf, Th., Goldacker, W., and Obst, B., J. Cryst. Growth 96, 1010 (1989).CrossRefGoogle Scholar
33.Sun, B. N., Boutellier, R., and Schmid, H., Physica C 157, 189 (1989).CrossRefGoogle Scholar
34.Liang, R., Dosanjh, P., Barr, D. A., Carolan, J. F., and Hardy, W. N., Physica C 195, 51 (1992).CrossRefGoogle Scholar
35.Monot, I., Delamare, M. P., Wang, J., Desgardin, G., and Raveau, B., Physica C 235–240, 457 (1994).CrossRefGoogle Scholar
36.Kim, C. J., Kim, K. B., Won, D. Y., and Hong, G. W., Mater. Lett. 20, 283 (1994).Google Scholar
37.Lo, Wai, Leung, H-T., Cardwell, D. A., and Chow, J. C. L., J. Am. Ceram. Soc. 80, 813 (1996).CrossRefGoogle Scholar
38.Leung, H-T., Lo, W., Chow, J. C. L., Cardwell, D. A., and Liang, W. Y., unpublished.Google Scholar
39.Schmitz, G. J., Nestler, B., Diepers, H. J., Pezzolla, F., Prieler, R., Seeßelberg, M., and Steinbath, I., in Proceedings of the Second European Conference on Applied Superconductivity, edited by Dew-Hughes, D., Institute of Physics Conference Series No. 148 (Institute of Physics, Bristol, United Kingdom), p. 167.Google Scholar