Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:46:39.445Z Has data issue: false hasContentIssue false

Analytical investigation of the simultaneous internal gettering of iron and nickel in silicon

Published online by Cambridge University Press:  31 January 2011

P.K. Sinha
Affiliation:
Department of Chemical, Bio, and Materials Engineering, Arizona State University, Tempe, Arizona 85287-1604
W.S. Glaunsinger
Affiliation:
Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604
Ray-Chern Deng
Affiliation:
Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604
Get access

Abstract

The simultaneous gettering of iron and nickel in a float-zone silicon wafer in the (100) orientation and implanted with 2.5 ⊠ 1015 argon ions/cm2 at 280 keV has been investigated. Iron was deposited on one half of the back surface of the wafer and nickel was deposited on the other half. Chemical analyses by secondary ion mass spectroscopy, energy dispersive x-ray spectroscopy, and high-resolution imaging by high-resolution electron microscopy revealed the gettering rate of iron was orders of magnitude lower than that of nickel. The results also suggested that gettering is a metal-diffusion-controlled process. The simultaneous gettering of iron and nickel results in a complex distribution of the two metals in the silicon wafer.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sinha, P. K. and Glaunsinger, W. S., Semiconductor Fabrication: Technology and Metrology (ASTM Philadelphia, PA, 1989), p. 339.Google Scholar
2Sinha, P. K. and Glaunsinger, W. S., J. Mater. Res. 5 (5), 1013 (1990).CrossRefGoogle Scholar
3Ourmazd, A. and Schroter, W. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1985), Vol. 36, p. 25.Google Scholar
4Colas, E.G. and Weber, E.R., Appl. Phys. Lett. 48 (20), 1371 (1986).CrossRefGoogle Scholar
5Buck, T. M., Poate, J. M., and Pickar, K.A., Surf. Sci. 35, 362 (1973).CrossRefGoogle Scholar
6Schmalz, K., Kirscht, F-G., Niese, S., Richter, H., Kittler, M., Seifert, W., Babanskaya, I., Klose, H., Tittelbach-Helmrich, K., and Schoneich, J., Phys. Stat. Sol. (a) 100, 69 (1987).CrossRefGoogle Scholar
7Maher, D. M., Staudinger, A., and Patel, J.R., J. Appl. Phys. 47 (9), 3813 (1976).CrossRefGoogle Scholar
8Vanderwalker, D. M., Phys. Stat. Sol. (a) 86, 507 (1984).CrossRefGoogle Scholar
9Nauka, N., Lagowski, J., Gatos, H. C., and Li, C-J., Appl. Phys. Lett. 46 (7), 673 (1985).CrossRefGoogle Scholar
10Weber, E. R., Appl. Phys. A 30, 1 (1983).CrossRefGoogle Scholar
11Peibst, H. and Raidt, H., Phys. Stat. Sol. (a) 68, 253 (1981).CrossRefGoogle Scholar
12Das, G., J. Appl. Phys. 44 (10), 4459 (1973).CrossRefGoogle Scholar
13Sparks, D. R., Chapman, R. G., and Alvi, N. S., Appl. Phys. Lett. 49 (9), 525 (1986).CrossRefGoogle Scholar
14Ghandhi, S. K., VLSI Fabrication Principles (John Wiley & Sons, New York, 1983).Google Scholar
15Sze, S. M., VLSI Technology (McGraw-Hill Book Company, New York, 1983); T.Y. Tan and W. K. Tice, Phil. Mag. 34 (4), 615 (1976).Google Scholar
16Johnson, W. S. and Gibbsons, J. F., Projected Range Statistics in Semiconductors (1970).Google Scholar
17Shinde, S. L. and De Jonghe, L.C., J. Electron Microscopy Tech. 3, 361 (1986).CrossRefGoogle Scholar
18Ohsawa, A., Honda, K., and Toyokura, N., J. Electrochem. Soc. 131, 2964 (1984).CrossRefGoogle Scholar
19Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (Van Nostrand Reinhold Company Ltd., England, 1981), p. 98.Google Scholar
20Swalin, R. A., J. Phys. Chem. Solids 18 (4), 290 (1961).CrossRefGoogle Scholar
21Woodbury, H. H. and Ludwig, G.W., Phys. Rev. 117, 102 (1960).CrossRefGoogle Scholar