Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T04:35:03.289Z Has data issue: false hasContentIssue false

An in situ transmission electron microscope investigation into grain growth and ordering of sputter-deposited nanocrystalline Ni3Al thin films

Published online by Cambridge University Press:  31 January 2011

H. P. Ng
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
A. H. W. Ngan
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
Get access

Abstract

The grain growth kinetics and ordering behavior of direct-current magnetron sputter-deposited Ni75at.%Al25at.% alloy films were investigated using in situ isothermal annealing in a transmission electron microscope. Both normal and abnormal grain growth modes were observed. The normal grain growth kinetics under isothermal heating from 300 to 700 °C were found to comply with the Burke law d = K/dn−1, where d is grain size and K and n are constants with respect to time. The grain boundary mobility parameter K was found to obey an Arrehnius rate law with an apparent activation energy of 1.6 eV, and n was found to increase gradually from 5.2 at 300 °C to 8.7 at 700 °C. Abnormal grain growth occurred at 500 °C or higher, and grain coalescence was identified as an important operative mechanism. It was also observed that the initially as-deposited state of the films was crystalline with a disordered face-centered-cubic structure, but ordering into the equilibrium L12 intermetallic structure followed from annealing at temperatures above approximately 500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wright, R.N., Fincke, J.R., Swank, W.D., Haggard, D.C., and Clark, C.R., in Elevated Temperature Coatings: Science and Technology I edited by Dahotre, N.B., Hampikian, J.M., and Stiglich, J.J. (Proc. High Temperature Coatings I, TMS, Warrendale, PA, 1995), p. 157.Google Scholar
2.Gonzalez, Z., Rodriguez, J.G., Casales, M., Amaya, M., and Martinez, L., Brit. Corr. J. 36, 65 (2001).CrossRefGoogle Scholar
3.Ng, H.P., Meng, X.K., and Ngan, A.H.W., Scripta Mater. 39, 1737 (1998).CrossRefGoogle Scholar
4.Xu, W.H., Meng, X.K., Ngan, A.H.W., Chen, X.Y., and Liu, Z.G., Mater. Lett. 44, 314 (2000).CrossRefGoogle Scholar
5.Leyens, C., Trautmann, K.H., Peters, M., and Kaysser, W.A., Scripta Mater. 36, 1309 (1997).CrossRefGoogle Scholar
6.Leyens, C., Liere, J.W. van, Peters, M., and Kaysser, W.A., Surf. Coat. Technol. 108–109, 30 (1998).CrossRefGoogle Scholar
7.Lee, H.N., Park, Z.M., Oh, M.H., Kim, K.Y., and Wee, D.M., Scripta Mater. 41, 1073 (1999).CrossRefGoogle Scholar
8.Leyens, C., Peters, M., and Kaysser, W.A., Adv. Eng. Mater. 2, 265 (2000).3.0.CO;2-U>CrossRefGoogle Scholar
9.Harper, J.M.E. and Rodbell, K.P., J. Vac. Sci. Technol. B 15, 763 (1997).CrossRefGoogle Scholar
10.Federspiel, X., Voiron, F., Ignat, M., Marieb, T., and Fujimoto, H., in Advanced Interconnects and Contact Materials and Processes for Future Integrated Circuits edited by Murarka, S.P., Eizenberg, M., Fraser, D.B., Madar, R., and Tung, R. (Mater. Res. Soc. Symp. Proc. 514, Warrendale, PA, 1998), p. 547.Google Scholar
11.Benoit, J.T., Chin, S., Grzybowski, R.R., Lin, S.T., Jain, R., McCluskey, P., and Bloom, T., in Fourth Int. High Temp. Electron. Conf. (IEEE, New York, 1998) p. 109Google Scholar
12.Ng, H.P. and Ngan, A.H.W., J. Appl. Phys. 88, 2609 (2000).CrossRefGoogle Scholar
13.Almeida, P. de, Schaäublin, R., Almazouzi, A., Victoria, M., and Lèvy, F., Thin Solid Films 368, 26 (2000).CrossRefGoogle Scholar
14.Ng, H.P. and Ngan, A.H.W., in Nanophase and Nanocomposite Materials III edited by Komarneni, S., Parker, J.C., and Hahn, H. (Mater. Res. Soc. Symp. Proc. 581, Warrendale, PA, 2000), p. 571.Google Scholar
15.Tellkamp, V.L., Dallek, S., Cheng, D., and Lavernia, E.J., J. Mater. Res. 16, 938 (2001).CrossRefGoogle Scholar
16.Lábár, J.L.,Proc. EUREM 12 edited by Frank, L. and Ciampor, F. (Czechoslovak Society for Electron Microscopy, Brno, Czechoslovakia, 2000), p. I379.Google Scholar
17.Burke, J.E. and Turnbull, D., Prog. Met. Phys. 3, 220 (1952).CrossRefGoogle Scholar
18.Meng, X.K., Vehoff, H., and Ngan, A.H.W., J. Mater. Res. 15, 2595 (2000).CrossRefGoogle Scholar
19.Varin, R.A., Bystrzycki, J., and Calka, A., Intermetallics 7, 785 (1999).CrossRefGoogle Scholar
20.Michels, A., Krill, C.E., Natter, H., and Birringer, R., in Grain Growth in Polycrystalline Materials III edited by H. Weiland, Adams, B.L., and Rollet, A.D. (TMS, Warrendale, PA, 1998), p. 449.Google Scholar
21.Marlow, T.R. and Koch, C.C., Acta Mater. 45, 2177 (1997).CrossRefGoogle Scholar
22.Morris-Muñoz, M.A., Dodge, A., and Morris, D.G., Nanostruct. Mater. 11, 873 (1999).CrossRefGoogle Scholar
23.Jurczyk, M., Smardz, K., Rajewski, W., and Smardz, L., Mater. Sci. Eng. A 303, 70 (2001).CrossRefGoogle Scholar
24.Lee, J., Zhou, F., Chung, K.H., Kim, N.J., and Lavernia, E.J., Metall. Mater. Trans. 32A, 3109 (2001).CrossRefGoogle Scholar
25.Michels, A., Krill, C.E., Ehrhardt, H., Birringer, R., and Wu, D.T., Acta Mater. 47, 2143 (1999).CrossRefGoogle Scholar
26.Barò, M.D., Surinach, S., Malagelada, J., Clavaguera-Mora, M.T., Gialanella, S., and Cahn, R.W., Acta Metall. Mater. 41, 1065 (1993).CrossRefGoogle Scholar
27.Rollett, A.D. and Mullins, W.W., Scripta Mater. 36, 975 (1997).CrossRefGoogle Scholar
28.Haslam, J., Phillpot, S.R., Wolf, D., Moldovan, D., and Gleiter, H., Mater. Sci. Eng. A 318, 293 (2001).CrossRefGoogle Scholar