Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T15:47:42.427Z Has data issue: false hasContentIssue false

An alternative analysis of water vapor and gas transport in polyimide films

Published online by Cambridge University Press:  31 January 2011

H. Ouyang
Affiliation:
Institute of Materials Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
Sanboh Lee
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

The water vapor and gas transport in polyimide films were analyzed using Harmon's model with accounts for case I transport and case II transport. Harmon's model was in good agreement with the experimental data. The diffusion coefficient obtained by Harmon's model was smaller than that obtained by using the short-time slope of mass uptake versus time with the exception of CO2 in polyimide. A comparison of the present model and the dual-mode sorption model, in which populations follow Henry's law and Langmuir type, was made.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Okamoto, K-I., Tanihara, N., Watanabe, H., Tanaka, K., Kita, H., Nakamura, A., Kusuki, Y., and Nakagawa, K., J. Polym. Sci., Part B: Polym. Phys. 30, 1223 (1992).CrossRefGoogle Scholar
2.Vieth, W. R., Howell, J. M., and Hsieh, J. H., J. Membr. Sci. 1, 177 (1976).CrossRefGoogle Scholar
3.Toi, K., Ito, T., Shirakawa, T., and Ikemoto, I., J. Polym. Sci., Part B: Polym. Phys. 30, 549 (1992).CrossRefGoogle Scholar
4.Frisch, H. L., Polym. Eng. Sci. 20, 2 (1980).CrossRefGoogle Scholar
5.Thomas, N. L. and Windle, A. H., Polymer 23, 529 (1982).CrossRefGoogle Scholar
6.Hui, C. Y., Wu, K. C., Lasky, R.C., and Kramer, E. J., J. Appl. Phys. 61, 5129 (1987).CrossRefGoogle Scholar
7.Peterlin, A., J. Res. Nat. Bureau Stand.-A. Phys. and Chem. 81A, 243 (1977).CrossRefGoogle Scholar
8.Frisch, H. L., Wang, T. T., and Kwei, T. K., J. Polym. Sci. 7 (A-2), 879 (1969).Google Scholar
9.Wang, T. T., Kwei, T. K., and Frisch, H. L., J. Polym. Sci. 7 (A-2), 2019 (1969).Google Scholar
10.Kwei, T. K. and Zupko, H. M., J. Polym. Sci. 7 (A-2), 867 (1969).Google Scholar
11.Kwei, T. K., Wang, T. T., and Zupko, H. M., Macromol. 5 (5), 645 (1972).CrossRefGoogle Scholar
12.Wang, T. T. and Kwei, T. K., Macromol. 6 (6), 919 (1973).CrossRefGoogle Scholar
13.Harmon, J. P., Lee, S., and Li, J. C. M., J. Polym. Sci., Part A: Polym. Chem. 25, 3215 (1987).CrossRefGoogle Scholar
14.Crank, J., The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, 1975), pp. 48 and 50.Google Scholar
15.Long, F. A. and Richman, D., J. Am. Chem. Soc. 82, 513 (1960).CrossRefGoogle Scholar
16.Crank, J. and Park, G. S., Trans. Farad. Soc. 47, 1072 (1951).CrossRefGoogle Scholar
17.Wu, T. and Lee, S., J. Polym. Sci., Part B: Polym. Phys. 32, 2055 (1994).CrossRefGoogle Scholar
18.Wang, P. P., Lee, S., and Harmon, J. P., J. Polym. Sci., Part B: Polym. Phys. 32, 1217 (1994).CrossRefGoogle Scholar
19.Barrer, R. M., Trans. Farad. Soc. 35, 628 (1939).CrossRefGoogle Scholar