Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T12:55:34.113Z Has data issue: false hasContentIssue false

Amorphous-to-polycrystalline phase transformations in Sn-implanted silicon

Published online by Cambridge University Press:  31 January 2011

R.P. Thornton
Affiliation:
Microelectronics and Materials Technology Centre, RMIT, Melbourne 3000, Australia
R.G. Elliman
Affiliation:
Microelectronics and Materials Technology Centre, RMIT, Melbourne 3000, Australia
J.S. Williams
Affiliation:
Microelectronics and Materials Technology Centre, RMIT, Melbourne 3000, Australia
Get access

Abstract

An amorphous-to-fine-grain-polycrystalline phase transformation has been observed during annealing of Sn-implanted Si when the peak Sn concentration exceeds about 2 at.%. At lower Sn concentrations, epitaxial growth is retarded in (100) Si but proceeds to completion with a large fraction of Sn residing on substitutional lattice sites. As the Sn concentration is increased, epitaxy is pre-empted by the sudden transformation of the near-surface Sn-doped region into polycrystalline Si. The time required to initiate the transformation is temperature dependent and is characterized by an activation energy of ∼1.7 eV. Rapid redistribution of Sn has been observed to accompany the transformation. Our observations are shown to be consistent with a melt-mediated crystallization process which is rate limited by Sn diffusion and precipitation in amorphous Si.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nygren, E., Pogany, A.P., Short, K.T., Williams, J.S., Elliman, R.G., and Poate, J. M., Appl. Phys. Lett. 52, 439 (1988).CrossRefGoogle Scholar
2Nygren, E., McCallum, J.C., Thornton, R., Williams, J.S., and Olson, G. L. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 100, p. 405.CrossRefGoogle Scholar
3Williams, J. S. and Elliman, R. G., Phys. Rev. Lett. 51,1069 (1983).CrossRefGoogle Scholar
4Suni, I., Goltz, G., Grimaldi, M. G., Nicolet, M-A., and Lau, S.S., Appl. Phys. Lett. 40, 269 (1982).CrossRefGoogle Scholar
5Suni, I., Goltz, G., Nicolet, M-A., and Lau, S. S., Thin Solid Films 93, 171 (1982).CrossRefGoogle Scholar
6Lietoila, A., Wakita, A., Sigmon, T.W., and Gibbons, J. F., J. Appl. Phys. 53, 4399 (1982).CrossRefGoogle Scholar
7Williams, J. S. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1986), Vol. 51, p. 83.Google Scholar
8Pennycook, S. J., Culbertson, R. J., and Berger, S. D. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 100, p. 411.CrossRefGoogle Scholar
9Sze, S. M., Physics of Semiconductor Devices (John Wiley, New York, 1981), 2nd ed.Google Scholar
10Olson, G. L. and Roth, J. A., Mater. Sci. Rep. 3, 1 (1988).CrossRefGoogle Scholar
11Williams, J.S. and Short, K.T. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1982), Vol. 7, p. 109.Google Scholar
12Pennycook, S. J., Culbertson, R. J., and Narayan, J., J. Mater. Res. 1, 476 (1986).CrossRefGoogle Scholar
13Nygren, E., Williams, J.S., Pogany, A.P., Elliman, R.G., Olson, G.L., and McCallum, J. C. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987) Vol. 74, p. 307.CrossRefGoogle Scholar
14Sharma, B. L., Diffusion in Semiconductors (Trans. Tech. Publications, Clausthal-Zellerfeld, Germany, 1970).Google Scholar