Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T04:05:10.099Z Has data issue: false hasContentIssue false

Amorphous phase formation in Al70Si17Fe13 alloy

Published online by Cambridge University Press:  31 January 2011

L. A. Bendersky
Affiliation:
Metallurgy Division, National Bureau of Standards, Gaithersburg, Maryland 20899
F. S. Biancaniello
Affiliation:
Metallurgy Division, National Bureau of Standards, Gaithersburg, Maryland 20899
R. J. Schaefer
Affiliation:
Metallurgy Division, National Bureau of Standards, Gaithersburg, Maryland 20899
Get access

Abstract

The alloy Al70Si17Fe13 was subjected to a range of rapid solidification conditions and the resulting microstructures were evaluated. It was found that when solidification was sufficiently rapid to bypass the formation of primary intermetallic phases, the alloy consisted of spherical regions of amorphous (or microquasicrystalline) material surrounded by a crystalline phase(s). This microstructure is interpreted as the result of solidification of the amorphous phase from the melt by a first-order transformation. The structure of the amorphous phase is different from that of a liquid (or usual metallic glass).

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Masui, K., Maruno, S., Sakakibara, S., and Kawaguchi, T., J. Non-Cryst. Sol. 74, 271 (1985).CrossRefGoogle Scholar
2Suzuki, R. O., Komatsu, Y., Kobayashi, K. F., and Shingu, P. H., J. Mater. Sci. 18, 1195 (1983).CrossRefGoogle Scholar
3Dubois, J. M., Dehghan, K., Janot, C., Chieux, P., and Chenal, B., J. Phys. Colloq. C8, 46, C8461 (1985).Google Scholar
4Dunlap, R. A. and Dini, K., J. Mater. Res. 1, 415 (1986).CrossRefGoogle Scholar
5Legresy, J. M., Audier, M., Simon, J. P., and Guyot, P., Acta Metall. 34, 1759 (1986).CrossRefGoogle Scholar
6Waren, W. W. Jr., Chen, H. S., and Hauser, J. J., Phys. Rev. B 32, 7614 (1985).CrossRefGoogle Scholar
7Hauser, J. J., Chen, H. S., and Waszczak, J. V., Phys. Rev. B 33, 3577 (1986).CrossRefGoogle Scholar
8Inoue, A., Yamamoto, M., Kimura, H. M., and Masumoto, T., J. Mater. Sci. Lett. 6, 194 (1987).CrossRefGoogle Scholar
9Bendersky, L. A. and Ridder, S. D., J. Mater. Res. 1, 405 (1986).CrossRefGoogle Scholar
10Boettinger, W. J., Shechtman, D., Schaefer, R. J., and Biancaniello, F. S., Metall. Trans. A 15, 55 (1984).CrossRefGoogle Scholar
11Schaefer, R. J. and Bendersky, L. A., Mater. Res. Soc. Symp. Proc. 58, 217 (1986).CrossRefGoogle Scholar
12Schaefer, R. J., Bendersky, L. A., Shechtman, D., Boettinger, W. J., and Biancaniello, F. S., Metall. Trans. A 17, 2117 (1986).CrossRefGoogle Scholar
13Rivlin, V. G. and Raynor, G. V., Inter. Metall. Rev. 26, 133 (1981).Google Scholar
14Black, P. I., Acta Crystallogr. 8, 175 (1955).CrossRefGoogle Scholar
15Louis, E., Mora, R., and Pastor, J., Met. Sci. 14, 591 (1980).CrossRefGoogle Scholar
16Fung, K. K., Zou, X. D., and Yang, C. Y., Philos. Mag. 55, 27 (1987).Google Scholar
17Kreider, K., Biancaniello, F. S., and Kaufman, M. J., Scr. Metall. 21, 657 (1987).CrossRefGoogle Scholar
18Follstaedt, D. M. and Knapp, J. A., J. Appl. Phys. 59, 1756 (1986).CrossRefGoogle Scholar
19Henley, C. L., Comments Condensed Matter Phys. (to be published).Google Scholar
20Kattner, U. (private communication).Google Scholar
21Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar