Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T05:36:12.415Z Has data issue: false hasContentIssue false

Amine-reactive surface chemistry of zinc phosphate glasses

Published online by Cambridge University Press:  03 March 2011

L.S. Hersh
Affiliation:
Research and Development Division, Corning, Inc., Sullivan Park, Corning, New York 14831
E.C. Onyiriuka
Affiliation:
Research and Development Division, Corning, Inc., Sullivan Park, Corning, New York 14831
W. Hertl
Affiliation:
Research and Development Division, Corning, Inc., Sullivan Park, Corning, New York 14831
Get access

Abstract

Surface chemical studies on zinc phosphate glasses were carried out with an ammonia probe using FTIR and XPS. Low softening point zinc phosphate glasses can be co-extruded with high softening point polymers to form polymer filled blends. NH3 reacts with P-OH groups (Br⊘nsted acid sites) to form bound NH4+ and with the zinc ions (Lewis acid sites) to form coordinately bound NH3. Bulk nitridation reactions, forming various P-N bonds to >100 nm, occur concurrently. The glass surfaces were depleted in Zn compared to the batch compositions. Exposure to ambient water vapor removed Lewis acid bound ammonia; aqueous washing removed both types. Di- and tri-methyl amines also reacted with surface Br⊘nsted and Lewis acid sites. These amine reactions have the potential for binding polymer chains to the glass surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Quinn, C. J. and Beall, G. H., Polym. Prepr., Div. Polym. Chem. 32, 205 (1991).Google Scholar
2Beall, G. H. and Quinn, C. J., Ceram. Trans. 33, 321 (1993).Google Scholar
3Quinn, C. J. and Beall, G. H., in Chemical Processing of Advanced Materials, edited by Hench, L. L. and West, J.K. (John Wiley, New York, 1994).Google Scholar
4Itoh, H. and Tada, A., J. Catal. 115, 244 (1989).CrossRefGoogle Scholar
5Rebenstorf, B., Lindblad, T., and Andersson, S. L. T., J. Catal. 128, 293 (1991).CrossRefGoogle Scholar
6Abbattista, F., Delmastro, A., Gozzeline, G., Mazza, D., Vallino, M., Busca, G., and Lorenzelli, V., J. Chem. Soc, Faraday Trans. 86(21), 3653 (1990).CrossRefGoogle Scholar
7Shikawa, T., Wakamura, M., Kawase, T., and Kondo, S., Langmuir 7(3), 596(1991); 5(1), 140 (1989).CrossRefGoogle Scholar
8Busca, G., Lorenzelli, V., Galli, P., Laginestra, A., and Patrono, P., J. Chem. Soc, Faraday Trans. 1 83, 853 (1987).CrossRefGoogle Scholar
9Tsyganenko, A. A., Pozdnyakov, D. V., and Filimonov, V. N., J. Mol. Struc. 29, 299 (1975).CrossRefGoogle Scholar
10Morimoto, T., Yanal, H., and Nagao, M., J. Phys. Chem. 80, 471 (1976).CrossRefGoogle Scholar
11Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed. (John Wiley, New York, 1978).Google Scholar
12Kung, M. C. and Kung, H. H., Catal. Rev.-Sci. Eng. 27(3), 425 (1985).CrossRefGoogle Scholar
13Little, L. H., Infrared Spectra of Adsorbed Species (Academic Press, New York, 1966).Google Scholar
14Fink, P. and Datka, J., J. Chem. Soc, Faraday Trans. I 85, 3079 (1989).CrossRefGoogle Scholar
15Jacobs, W.P.J. H., van Wolput, J.H.M.C., and van Santen, R. A., J. Chem. Soc, Faraday Trans. 89, 1271 (1993).CrossRefGoogle Scholar
16Hertl, W., Langmuir 5, 96 (1989).CrossRefGoogle Scholar
17Zecchina, A., Coluccia, S., and Morterra, C., Appl. Spectrosc. Rev. 21, 259 (1985).CrossRefGoogle Scholar
18Belokopytov, Y. V., Kholyavenko, K. M., and Gerei, S. V., J. Catal. 60(1), 1 (1979).CrossRefGoogle Scholar
19Reidmayer, M. R., Rajaram, M., and Day, D. E., J. Non-Cryst. Solids 85, 186 (1986).CrossRefGoogle Scholar
20Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, (John Wiley, New York, 1980), p. 460.Google Scholar
21Bunker, B. C., Tallant, D. R., Balfe, C. A., Kirkpatrick, R. J., Turner, G. L., and Reidmeyer, M.R., J. Am. Ceram. Soc. 70(9), 675 (1987).CrossRefGoogle Scholar
22Brow, R. K., Zhu, Y., Day, D.E., and Arnold, G.W.. J. Non-Cryst. Solids 120, 172 (1990).CrossRefGoogle Scholar
23Brow, R. K., Reidmeyer, M. R., and Day, D. E., J. Non-Cryst. Solids 99, 178 (1988).CrossRefGoogle Scholar
24Marchand, R., Agliz, D., Boukbir, L., and Quemerais, A., J. Non-Cryst. Solids 103, 35 (1988).CrossRefGoogle Scholar
25Borade, R., Sayari, A., Adnot, A., and Kaliaguine, S., J. Phys. Chem. 94, 5989 (1990).CrossRefGoogle Scholar
26Perry, W. B., Schaaf, T. F., and Jolly, W.L., JACS 97:17, 4899 (1975).CrossRefGoogle Scholar
27Quan, D. T., Bloa, A. L., Hbib, H., Bonnaud, O., Meinnel, J., Quemerais, A., and Marchand, R., Rev. Phys. Appl. 24, 545 (1989).CrossRefGoogle Scholar
28Bellamy, L. J., Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1975) p. 361.CrossRefGoogle Scholar