Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T13:11:51.302Z Has data issue: false hasContentIssue false

Aluminum nitride-silicon carbide solid solutions grown by plasma-assisted, gas-source molecular beam epitaxy

Published online by Cambridge University Press:  31 January 2011

R. S. Kern
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
L. B. Rowland
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
S. Tanaka
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
Get access

Extract

Solid solutions of aluminum nitride (AlN) and silicon carbide (SiC) have been grown at 900–1300 °C on vicinal α (6H)-SiC(0001) substrates by plasma-assisted, gas-source molecular beam epitaxy. Under specific processing conditions, films of (AlN)x(SiC) 1−x with 0.2 ≤ x ≤ 0.8, as determined by Auger electron spectrometry (AES), were deposited. Reflection high-energy electron diffraction (RHEED) was used to determine the crystalline quality, surface character, and epilayer polytype. Analysis of the resulting surfaces was also performed by scanning electron microscopy (SEM). High-resolution transmission electron microscopy (HRTEM) revealed that monocrystalline films with x ≥ 0.25 had the wurtzite (2H) crystal structure; however, films with x < 0.25 had the zincblende (3C) crystal structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fisher, G. R. and Barnes, P., Philos. Mag. B 61, 217 (1990).CrossRefGoogle Scholar
2.Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. I., Ettenberg, M., and Gilbert, S. L., J. Appl. Phys. 44, 292 (1973).CrossRefGoogle Scholar
3.Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).CrossRefGoogle Scholar
4.Slack, G. A., J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
5.Zheng, L., Ramalingam, S., Shi, T., and Peterson, R. L., J. Vac. Sci. Technol. A 11, 2437 (1993).CrossRefGoogle Scholar
6.Okano, H., Tanaka, N., Shibata, K., and Nakano, S., Jpn. J. Appl. Phys. 32, 4052 (1993).Google Scholar
7.Okano, H., Tanaka, N., Takahashi, Y., Tanaka, T., Shibata, K., and Nakano, S., Appl. Phys. Lett. 64, 166 (1994).CrossRefGoogle Scholar
8.Tikhonov, S. K., Sushentov, N. I., and Rud', V. Yu., Tech. Phys. Lett. 21, 187 (1995).Google Scholar
9.Mirsh, S. and Reimer, H., Phys. Status Solidi 11, 631 (1972).CrossRefGoogle Scholar
10.Bauer, J., Biste, L., Bolze, D., and Eichorn, G., Phys. Status Solidi 399, 173 (1977).CrossRefGoogle Scholar
11.Morita, M., Isogai, S., Tsubouchi, K., and Mikoshiba, N., Appl. Phys. Lett. 38, 50 (1981).CrossRefGoogle Scholar
12.Morita, M., Tsubouchi, K., and Mikoshiba, N., Jpn. J. Appl. Phys. 21, 728 (1982).CrossRefGoogle Scholar
13.Koshinaka, M., Fujii, H., Nakanishi, K., and Shibuya, Y., Vacuum 41, 1971 (1990).CrossRefGoogle Scholar
14.Ahmed, A. U., Rys, A., Singh, N., Edgar, J. H., and Yu, Z. J., J. Electrochem. Soc. 139, 1146 (1992).Google Scholar
15.Alexandre, F., Masson, J. M., Post, G., and Scavennec, A., Thin Solid Films 98, 75 (1982).CrossRefGoogle Scholar
16.Fujieda, S., Mizuki, J., and Matsumoto, Y., Jpn. J. Appl. Phys. 27, L296 (1988).CrossRefGoogle Scholar
17.Fujieda, S., Mochizuki, Y., Akimoto, K., Hirosawa, I., Matsumoto, Y., and Matsui, J., Jpn. J. Appl. Phys. 29, L364 (1990).Google Scholar
18.Mochizuki, Y., Mizuta, M., Fujieda, S., and Matsumoto, Y., J. Appl. Phys. 67, 2466 (1990).CrossRefGoogle Scholar
19.Bhattacharya, P. and Bose, D. N., Jpn. J. Appl. Phys. 30, L1750 (1991).CrossRefGoogle Scholar
20.Fujieda, S., Akimoto, K., Hirosawa, I., Mizuki, J., Matsumoto, Y., and Matsui, J., Jpn. J. Appl. Phys. 28, L16 (1989).CrossRefGoogle Scholar
21.Aboelfotoh, M. O., Kern, R. S., Davis, R. F., and Harris, C. I., unpublished.Google Scholar
22.Matignon, C., Compt. Rend. hu. L'Acad. Sci. 178, 1615 (1924).Google Scholar
23.Rafaniello, W., Cho, K., and Virkar, A. V., J. Mater. Sci. 16, 3479 (1981).CrossRefGoogle Scholar
24.Rafaniello, W., Plichta, M. R., and Virkar, A. V., J. Am. Ceram. Soc. 66, 272 (1983).CrossRefGoogle Scholar
25.Ruh, R. and Zangvil, A., J. Am. Ceram. Soc. 65, 260 (1982).CrossRefGoogle Scholar
26.Zangvil, A. and Ruh, R., Mater. Sci. Eng. 71, 159 (1985).CrossRefGoogle Scholar
27.Zangvil, A. and Ruh, R., J. Am. Ceram. Soc. 71, 884 (1988).CrossRefGoogle Scholar
28.Zangvil, A. and Ruh, R., in Silicon Carbide ‘87, edited by Cawley, J. D. and Semler, C. E. (American Ceramic Society, Westerville, OH, 1989), p. 63.Google Scholar
29.Kuo, S-Y., Virkar, A. V., and Rafaniello, W., J. Am. Ceram. Soc. 70, C-125 (1987).CrossRefGoogle Scholar
30.Kuo, S-Y. and Virkar, A. V., J. Am. Ceram. Soc. 73, 2640 (1990).CrossRefGoogle Scholar
31.Czekaj, C. L., Hackney, M. L. J., Hurley, W. J. Jr., Interrante, L. V., Sigel, G. A., Shields, P. J., and Slack, G. A., J. Am. Ceram. Soc. 73, 352 (1990).CrossRefGoogle Scholar
32.Nurmagomedov, Sh. A., Pikhtin, A. N., Razbegaev, V. N., Safaraliev, G. K., Tairov, Yu.M., and Tsvetkov, V. F., Sov. Tech. Phys. Lett. 12, 431 (1986).Google Scholar
33.Nurmagomedov, Sh. A., Safaraliev, G. K., Sorokin, N. D., Tairov, Yu.M., and Tsvetkov, V. F., Inorg. Mater. 22, 1464 (1986).Google Scholar
34.Nurmagomedov, Sh. A., Pikhtin, A. N., Razbegaev, V. N., Safaraliev, G. K., Tairov, Yu.M., and Tsvetkov, V. F., Sov. Phys. Semicond. 23, 100 (1989).Google Scholar
35.Safaraliev, G. K., Sukhanek, G. K., Tairov, Yu.M., and Tsvetkov, V. F., Inorg. Mater. 22, 1610 (1986).Google Scholar
36.Safaraliev, G. K., Tairov, Yu.M., and Tsvetkov, V. F., Sov. Phys. Semicond. 25, 865 (1991).Google Scholar
37.Safaraliev, G. K., Tairov, Yu.M., Tsvetkov, V. F., Shabanov, Sh. Sh., Pashchuk, E. G., Offitserova, N. V., Avrov, D. D., and Sadykov, S. A., Semicond. 27, 224 (1993).Google Scholar
38.Safaraliev, G. K. and Tairov, Yu.M., in Transactions of the Second International High Temperature Electronics Conference (1994), p. XIV–25.Google Scholar
39.Safaraliev, G. K. and Tairov, Yu.M., in Technical Digest of the International Conference on Silicon Carbide and Related Materials 1995 (1995), p. 454.Google Scholar
40.Dmitriev, V. A., Elfimov, L. B., Lin'kov, I.Yu., Morozenko, Ya V., Nikitina, I. P., Chelnokov, V. E., Cherenkov, A. E., and Chernov, M. A., Sov. Tech. Phys. Lett. 17, 214 (1991).Google Scholar
41.Dmitriev, V. A., in Amorphous and Crystalline Silicon Carbide III and Other Group IV-IV Materials, edited by Harris, G. L., Spencer, M. G., and Yang, C. Y. (Springer-Verlag, Berlin, 1992), p. 3.Google Scholar
42.Dmitriev, V. A., Elfimov, L. B., Lin'kov, I.Yu., Morozenko, Ya.V., Nikitina, I. P., Chelnokov, V. E., Cherenkov, A. E., and Chernov, M. A., in Amorphous and Crystalline Silicon Carbide IV, edited by Yang, C. Y., Rahman, M. M., and Harris, G. L. (Springer-Verlag, Berlin, 1992), p. 101.Google Scholar
43.Dmitriev, V. and Cherenkov, A., J. Cryst. Growth 128, 343 (1993).CrossRefGoogle Scholar
44.Dmitriev, V. A., Phys. B 185, 440 (1993).CrossRefGoogle Scholar
45.Dmitriev, V. A., Irvine, K. G., Spencer, M. G., and Nikitina, I. P., in Silicon Carbide and Related Materials, edited by Spencer, M. G., Devaty, R. P., Edmond, J. A., Khan, M. A., Kaplan, R., and Rahman, M. (Institute of Physics, Bristol, 1994), p. 67.Google Scholar
46.Jenkins, I., Irvine, K. G., Spencer, M. G., Dmitriev, V., and Chen, N., J. Cryst. Growth 128, 375 (1993).CrossRefGoogle Scholar
47.Wongchotigul, K., Spencer, M. G., Chen, N., and Prasad, B. D., Mater. Lett. 21, 381 (1994).CrossRefGoogle Scholar
48.Wongchotigul, K., Spencer, M. G., Chen, N., Zhang, D., Fekade, K., Gomez, A., Thomas, C., Dmitriev, V., and Irvine, K., in Silicon Carbide and Related Materials, edited by Spencer, M. G., Devaty, R. P., Edmond, J. A., Khan, M. A., Kaplan, R., and Rahman, M. (Institute of Physics, Bristol, 1994), p. 397.Google Scholar
49.Edgar, J. H., Yu, Z. J., and Swye, B. S., in Silicon Carbide and Related Materials, edited by Spencer, M. G., Devaty, R. P., Edmond, J. A., Khan, M. A., Kaplan, R., and Rahman, M. (Institute of Physics, Bristol, 1994), p. 401.Google Scholar
50.Edmond, J., Kong, H., and Dmitriev, V., in Silicon Carbide and Related Materials, edited by Spencer, M. G., Devaty, R. P., Edmond, J. A., Khan, M. A., Kaplan, R., and Rahman, M. (Institute of Physics, Bristol, 1994), p. 515.Google Scholar
51.Rowland, L. B., Tanaka, S., Kern, R. S., and Davis, R. F., in Amorphous and Crystalline Silicon Carbide IV, edited by Yang, C. Y., Rahman, M. M., and Harris, G. L. (Springer-Verlag, Berlin, 1992), p. 84.CrossRefGoogle Scholar
52.Kern, R. S., Ph.D. Thesis, North Carolina State University, Raleigh, NC (1996).Google Scholar
53.N.Wright, A. and Winkler, C. A., Active Nitrogen (Academic Press, New York, 1968).Google Scholar
54.Vaudo, R. P., Cook, J. W. Jr., and Schetzina, J. F., J. Vac. Sci. Technol. B 12, 1232 (1994).CrossRefGoogle Scholar
55.Molnar, R. J. and Moustakas, T. D., J. Appl. Phys. 76, 4587 (1994).CrossRefGoogle Scholar
56.Zalar, A., Thin Solid Films 124, 223 (1985).CrossRefGoogle Scholar