Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T12:29:51.388Z Has data issue: false hasContentIssue false

Alloy clustering and defect structure in the molecular beam epitaxy of In0.53Ga0.47As on silicon

Published online by Cambridge University Press:  31 January 2011

Alexandros Georgakilas*
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas (FORTH), P.O. Box 1527, 711 10 Heraklion, Crete, Greece
Athanasios Dimoulas
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas (FORTH), P.O. Box 1527, 711 10 Heraklion, Crete, Greece
Aristotelis Christou
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas (FORTH), P.O. Box 1527, 711 10 Heraklion, Crete, Greece, and CALCE Electronic Packaging Research Center, Microelectromics Devices Laboratory, University of Maryland, College Park, Maryland 20742
John Stoemenos
Affiliation:
Physics Department, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece
*
a)Present address: Visiting researcher in the CALCE Electronic Packaging Research Center, Microelectronics Devices Laboratory, University of Maryland, College Park, Maryland 20742.
Get access

Abstract

The MBE growth of InxGa1−xAs (x ∼ 0.53) on silicon substrates has been investigated emphasizing the effects of substrate orientation and buffer layers between In0.53Ga0.47As and Si. It is shown that growth on silicon substrates misoriented from (001) toward a [110] direction eliminates the presence of antiphase domains. The best In0.53Ga0.47As surface morphology was obtained when a 0.9 μm epitaxial Si buffer was initially grown, followed by a pre-exposure of the silicon surface to As4 at 350 °C, followed by the growth of In0.53Ga0.47As. Threading dislocations, stacking faults, low-angle grain boundaries, and spinodal decomposition were observed by TEM in the InGaAs layers. The spinodal contrast scale was shown to depend on the buffer type and the total InGaAs thickness. Thick buffers consisted of GaAs or graded InxGa1−xAs layers, and large In0.53Ga0.47As thicknesses favor the development of a coarse-scale spinodal decomposition with periodicity around 0.1 μm. Thin GaAs buffers or direct In0.53Ga0.47As growth on Si may result in a fine-scale decomposition of periodicity ∼10 nm. The principal strain direction of the spinodal decomposition appeared along the [1$\overline 1$0] direction, parallel to the vicinal Si surface step edges. InGaAs immiscibility affects the InGaAs growth process, favoring a 3-D growth mode. X-ray diffraction measurements and photoreflectance spectra indicated that the sample quality was improved for samples exhibiting a fine-scale spinodal decomposition contrast even if they contained a higher dislocation density. Threading dislocations run almost parallel to the [001] growth axis and are not affected by strained layers and short period (InAs)3/(GaAs)3 superlattices. The lowest double crystal diffractometry FWHM for the (004) InGaAs reflection was 720 arc sec and has been obtained growing InGaAs directly on Si, while the lowest dislocation density was 3 × 109 cm−2 and was obtained using a 1.5 μm GaAs buffer before the In0.53Ga0.47As deposition.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Panayotatos, P., Georgakilas, A., Mourrain, J-L., and Christou, A., in Physical Concepts of Materials for Novel Optoelectronic Device Applications I, edited by Raseghi, M., SPIE 1361 (1990), p. 1100.Google Scholar
2.Papanicolaou, N. A., Anderson, G. W., Modolo, J. A., and Georgakilas, A., Superlattices and Microstructures 8, 273 (1990).Google Scholar
3.Georgakilas, A., Stoemenos, J., Berge, C., Michelakis, C., Cason, C., Lagadas, M., Hatzopoulos, Z., and Christou, A., in Institute of Physics Conference Series No. 112, edited by Singer, K. E. (1990), p. 135; A. Georgakilas, P. Panayotatos, J. Stoemenos, J-L. Mourrain, and A. Christou, J. Appl. Phys. 71, 2679 (1992).Google Scholar
4.Ziel, J. P. Van der and Chand, N., J. Appl. Phys. 68, 2731 (1990).Google Scholar
5.Dimoulas, A., Tzanetakis, P., Georgakilas, A., Glembocki, O. J., and Christou, A., J. Appl. Phys. 67, 4389 (1990).Google Scholar
6.Kroemer, H., in Heteroepitaxy on Silicon, edited by Fan, J. C. C. and Poate, J. M. (Mater. Res. Soc. Symp. Proc. 67, Pittsburgh, PA, 1986), p. 3.Google Scholar
7.Georgakilas, A., Tsagaraki, K., and Christou, A., Mater. Lett. 10, 525 (1991).CrossRefGoogle Scholar
8.Cremoux, B. de, J. Phys. (Paris) 43, colloq. C5, suppl. no 12, C519 (1982).Google Scholar
9.Stringfellow, G. B., J. Cryst. Growth 58, 194 (1982).CrossRefGoogle Scholar
10.Glass, F., J. Appl. Phys. 62, 3201 (1987).Google Scholar
11.Motta, N., Shaukat, A., Qteish, A., and Balzarotti, A., in Proc. of 20th ICPS, edited by Anastassakis, E. M. and Joannopoulos, J. D. (World Scientific, 1990), Vol. 3, p. 2625.Google Scholar
12.Wei, S-H., Ferreira, L. G., and Zunger, A., Phys. Rev. B 41, 8240 (1990).CrossRefGoogle Scholar
13.Mathews, J. W., in Dislocations in Solids, edited by Nabarro, F. R. N. (North-Holland, Amsterdam, 1979), Vol. 2, Chap. 7.Google Scholar
14.Mathews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
15.Pirouz, P., Ernst, F., and Cheng, T. T., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p 57.Google Scholar
16.Schowalter, L. J., in Heteroepitaxy on Silicon: Fundamentals, Structures, and Devices, edited by Choi, H. K., Hull, R., Ishiwara, H., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA, 1988), p. 3.Google Scholar
17.Tsai, H. L. and Matyi, R. J., Appl. Phys. Lett. 55, 265 (1989).Google Scholar
18.Grabow, M. H. and Gilmer, G. H., Surf. Sci. 194, 333 (1988).Google Scholar
19.Glas, F., in Evaluation of Advanced Semiconductor Materials by Electron Microscopy, NATO ASI series B, Phys., edited by Cherns, D. (Plenum Press, New York, 1989), Vol. 203, p. 217.CrossRefGoogle Scholar
20.Mahajan, S. and Shahid, M. A., in Advances in Materials, Processing and Devices in III-V Compound Semiconductors, edited by Sadana, D. K., Eastman, L. E., and Dupuis, R. (Mater. Res. Soc. Symp. Proc. 144, Pittsburgh, PA, 1989), p. 169.Google Scholar
21.Peiro, F., Cornet, A., Morante, J. R., Clark, S., and Williams, R. H., Appl. Phys. Lett. 59, 1957 (1991).Google Scholar
22.Gowers, J. P., Appl. Phys. A 31, 23 (1983).Google Scholar
23.Henoc, P., Izrael, A., Quillec, M., and Launois, H., Appl. Phys. Lett. 40, 963 (1982).CrossRefGoogle Scholar
24.Chu, S. N. G., Nakahara, S., Strege, K. E., and Johnston, W. D., Jr., J. Appl. Phys. 57, 4610 (1985).CrossRefGoogle Scholar
25.Mackenzie, R. A. D., Liddle, J. A., and Grovenor, C. R. M., J. Appl. Phys. 69, 250 (1991).CrossRefGoogle Scholar
26.Lee, M. K., Wuu, D. S., and Tung, H. H., Appl. Phys. Lett. 50, 1725 (1987).Google Scholar
27.Razeghi, M., Defour, M., Blondeau, R., Omnes, F., Maurel, P., Acher, O., Brillouet, F., Fan, J. C. C., and Salerno, J., Appl. Phys. Lett. 53, 2389 (1988).Google Scholar
28.Oe, K. and Takeuchi, H., Jpn. J. Appl. Phys. 26, L120 (1987). 29. A. Georgakilas, Z. Hatzopoulos, A. A. Iliadis, and A. Christou, Mater. Lett. 7, 456 (1989).CrossRefGoogle Scholar
30.Kugimiya, K., Hirofuji, Y., and Matsuo, N., Jpn. J. Appl. Phys. 24, 564 (1985).Google Scholar
31.Hull, R., Fischer-Colbrie, A., and Rosner, S. J., Appl. Phys. Lett. 51, 1723 (1987).Google Scholar
32.Georgakilas, A., Lagadas, M., Stoemenos, J., and Christou, A., presented in sixth Europ. Conf. on MBE and Relat. Growth Methods, April 2124, Tampere, Finland, 1991.Google Scholar
33.Praseuth, J. P., Goldstein, L., Henoc, P., Primot, J., and Danan, G., J. Appl. Phys. 61, 215 (1987).Google Scholar
34.Salokatve, A. and Hovinen, M., J. Appl. Phys. 67, 3378 (1990).Google Scholar
35.Johnson, W. C. and Chiang, C. S., J. Appl. Phys. 64, 1155 (1988).Google Scholar
36.Larche, F. C., Johnson, W. C., Chiang, C. S., and Martin, G., J. Appl. Phys. 64, 5251 (1988).CrossRefGoogle Scholar
37.Koch, S. M., Rosner, S. J., Hull, R., Voffe, G. W., and Harris, J. S., Jr., J. Cryst. Growth 81, 205 (1987).Google Scholar